终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024年河北省石家庄市裕华区数学九上开学复习检测模拟试题【含答案】

    立即下载
    加入资料篮
    2024年河北省石家庄市裕华区数学九上开学复习检测模拟试题【含答案】第1页
    2024年河北省石家庄市裕华区数学九上开学复习检测模拟试题【含答案】第2页
    2024年河北省石家庄市裕华区数学九上开学复习检测模拟试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年河北省石家庄市裕华区数学九上开学复习检测模拟试题【含答案】

    展开

    这是一份2024年河北省石家庄市裕华区数学九上开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,已知函数和的图象相交于点,则关于的不等式的解集为( )
    A.B.C.D.
    2、(4分)计算的结果是( )
    A.0B.1C.2 D.2 
    3、(4分)已知一次函数y=kx﹣k(k≠0),y随x的增大而增大,则该函数的图象大致是()
    A.B.
    C.D.
    4、(4分)菱形,矩形,正方形都具有的性质是( )
    A.四条边相等,四个角相等 B.对角线相等
    C.对角线互相垂直 D.对角线互相平分
    5、(4分)如图,在矩形中,平分,交边于点,若,,则矩形的周长为( )
    A.11B.14C.22D.28
    6、(4分)如图,将点P(-2,3)向右平移n个单位后落在直线y=2x-1上的点P'处,则n等于( )
    A.4B.5C.6D.7
    7、(4分)如图,在△ABC中,BF平分∠ABC,过A点作AF⊥BF,垂足为F并延长交BC于点G,D为AB中点,连接DF延长交AC于点E。若AB=12,BC=20,则线段EF的长为( )
    A.2B.3C.4D.5
    8、(4分)如图,矩形中,分别是线段的中点,,动点沿的路线由点运动到点,则的面积是动点运动的路径总长的函数,这个函数的大致图象可能是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,△ACB和△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边DE上,若,则=___.
    10、(4分)对于函数y=(m﹣2)x+1,若y随x的增大而增大,则m的取值范围_____.
    11、(4分)某企业两年前创办时的资金为1000万元,现在已有资金1210万元,设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:______.
    12、(4分)多项式与多项式的公因式分别是______.
    13、(4分)若在实数范围内有意义,则x的取值范围是_________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分) (1)如图,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为( )
    A.平行四边形 B.菱形 C.矩形 D.正方形
    (2)如图,在(1)中的四边形纸片AEE/D中,在EE/上取一点F,使EF=4,剪下△AEF,将它平移至△DE/F/的位置,拼成四边形AFF/D.
    ①求证:四边形AFF'D是菱形;
    ②求四边形AFF'D的两条对角线的长.
    图1 图2
    15、(8分)计算:(2﹣)×÷5.
    16、(8分)为了预防流感,某学校在休息日用药熏消毒法对教室进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t之间的函数解析式为y=(a为常数),如图所示. 根据图中提供的信息,解答下列问题:
    (1)写出从释放药物开始,y与t之间的两个函数解析式及相应的自变量取值范围;
    (2)据测定,当空气中每立方米的含药量降低到0.25mg以下时,学生方可进入教室,那么药物释放开始,至少需要经过多少小时,学生才能进入教室?
    17、(10分)如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE=∠CDF.
    求证:(1)△ABE≌△CDF;
    (2)四边形EBFD是平行四边形.
    18、(10分)某花卉种植基地准备围建一个面积为100平方米的矩形苗圃园园种植玫瑰花,其中一边靠墙,另外三边用29米长的篱笆围成.已知墙长为18米,为方便进入,在墙的对面留出1米宽的门(如图所示),求这个苗圃园垂直于墙的一边长为多少米?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)化简得 .
    20、(4分)数据15、19、15、18、21的中位数为_____.
    21、(4分)已知、为有理数,、分别表示的整数部分和小数部分,且,则 .
    22、(4分)如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为_____.
    23、(4分)在△ABC中,∠C=90°,若b=7,c=9,则a=_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.
    ①当0≤x≤3时,求y与x之间的函数关系.
    ②3<x≤12时,求y与x之间的函数关系.
    ③当容器内的水量大于5升时,求时间x的取值范围.
    25、(10分)如图.已知A、B两点的坐标分别为A(0,),B(2,0).直线AB与反比例函数的图象交于点C和点D(1,a).
    (1)求直线AB和反比例函数的解析式.
    (2)求∠ACO的度数.
    26、(12分)某村为绿化村道,计划在村道两旁种植 A、B 两种树木,需要购买这两种树苗 800 棵,A、B 两种树苗的相关信息如表:
    设购买 A 种树苗 x 棵,绿化村道的总费用为 y 元,解答下列问题:
    (1)求出 y 与 x 之间的函数关系式.
    (2)若这批树苗种植后成活了 670 棵,则绿化村道的总费用需要多少元?
    (3)若绿化村道的总费用不超过 120000 元,则最多可购买 B 种树苗多少棵?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    先将点A(m,4)代入y=-2x,求出m的值,再由函数的图象可以看出当x>m时,一次函数y=kx+b的图象在y=-2x的上方,即可得出答案.
    【详解】
    将点A(m,4)代入y=-2x,
    得-2m=4,
    解得m=-2,
    则点A(-2,4),
    当x>-2时,一次函数y=kx+b的图象在y=-2x的上方,即.
    故选:A.
    本题主要考查对一次函数与一元一次不等式的理解和掌握,能根据图象得出当x>-2时是解答此题的关键.
    2、B
    【解析】
    根据零指数幂的意义即可解答.
    【详解】
    .
    本题主要考查了零指数幂的意义,记住任何非零数的零指数幂等于1是解答本题的关键.
    3、B
    【解析】
    一次函数的图象与性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.当b>0时,直线与y轴交于正半轴;当b<0时,直线与y轴交于负半轴.
    【详解】
    ∵一次函数y=kx﹣k,y随x增大而增大,
    ∴k>0,﹣k<0,
    ∴此函数的图象经过一、三、四象限.
    故选B.
    本题主要考查了一次函数的图象与性质,熟练掌握一次函数的图像与系数的关系式解答本题的关键.
    4、D
    【解析】试题解析:A、不正确,矩形的四边不相等,菱形的四个角不相等;
    B、不正确,菱形的对角线不相等;
    C、不正确,矩形的对角线不垂直;
    D、正确,三者均具有此性质;
    故选D.
    5、C
    【解析】
    根据勾股定理求出DC=4,证明BE=AB=4,即可求出矩形的周长;
    【详解】
    ∵四边形ABCD是矩形,
    ∴∠C=90°,AB=CD;AD∥BC;
    ∵ED=5,EC=3,
    ∴DC =DE−CE=25−9,
    ∴DC=4,AB=4;
    ∵AD∥BC,
    ∴∠AEB=∠DAE;
    ∵AE平分∠BAD,
    ∴∠BAE=∠DAE,
    ∴∠BAE=∠AEB,
    ∴BE=AB=4,
    矩形的周长=2(4+3+4)=22.
    故选C
    此题考查矩形的性质,解题关键在于求出DC=4
    6、A
    【解析】
    由平移的性质得出P'的坐标,把P'点坐标代入直线y=2x-1上即可求出n的值;
    【详解】
    由题意得P'(-2+n,3),
    则3=2(-2+n)-1,
    解得n=4.
    故答案为A.
    本题主要考查了一次函数的图象,平移的性质,掌握一次函数的图象,平移的性质是解题的关键.
    7、C
    【解析】
    由直角三角形的性质可求得DF=BD= AB,由角平分线的定义可证得DE∥BC,利用三角形中位线定理可求得DE的长,则可求得EF的长.
    【详解】
    解:∵AF⊥BF,D为AB的中点,
    ∴DF=DB=AB=6,
    ∴∠DBF=∠DFB,
    ∵BF平分∠ABC,
    ∴∠DBF=∠CBF,
    ∴∠DFB=∠CBF,
    ∴DE∥BC,
    ∴DE为△ABC的中位线,
    ∴DE=BC=10,
    ∴EF=DE−DF=10−6=4,
    故选:C.
    本题考查直角三角形斜边上的中线的性质,角平分线的性质,等腰三角形的判定与性质,三角形中位线定理.根据直角三角形斜边上的中线是斜边是斜边的一半可得△DBF为等腰三角形,通过角平分线的性质和等角对等边可得DF//BC,即DE为△ABC的中位线,从而计算出DE,继而求出EF.
    8、C
    【解析】
    根据题意分析△PAB的面积的变化趋势即可.
    【详解】
    根据题意当点P由E向C运动时,△PAB的面积匀速增加,当P由C向D时,△PAB的面积保持不变,当P由D向F运动时,△PAB的面积匀速减小但不为1.
    故选C.
    本题为动点问题的函数图象探究题,考查了一次函数图象的性质,分析动点到达临界点前后函数值变化是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据等边三角形的性质就可以得出△AEC≌△BDC,就可以得出AE=BD,∠E=∠BDC,由等腰直角三角形的性质就可以得出∠ADB=90°,由勾股定理就可以得出:,再设AE=k,则AD=3k,BD=k,求出BC=k,进而得到
    的值.
    【详解】
    ∵△ACB与△ECD都是等腰直角三角形,
    ∴∠ECD=∠ACB=90°,
    ∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,
    ∴,∠ECD−∠ACD=∠ACB−∠ACD,
    ∴∠ACE=∠BCD.
    在△AEC和△BDC中,

    ∴△AEC≌△BDC(SAS),
    ∴AE=BD,∠E=∠BDC,
    ∴∠BDC=45°,
    ∴∠BDC+∠ADC=90°,
    即∠ADB=90°.
    ∴.
    ∵,
    ∴可设AE=k,则AD=3k,BD=k,
    ∴,
    ∴BC=,
    ∴.
    故答案为:.
    此题考查勾股定理、等腰直角三角形、全等三角形的判定与性质,解题关键在于“设k法”列出比例式即可.
    10、m>1
    【解析】
    根据图象的增减性来确定(m﹣1)的取值范围,从而求解.
    【详解】
    解:∵一次函数y=(m﹣1)x+1,若y随x的增大而增大,
    ∴m﹣1>2,
    解得,m>1.
    故答案是:m>1.
    本题考查了一次函数的图象与系数的关系.
    函数值y随x的增大而减小⇔k<2;
    函数值y随x的增大而增大⇔k>2.
    11、.
    【解析】
    根据关系式:现在已有资金1000万元×(1+年平均增长率)2=现在已有资金1万元,把相关数值代入即可求解.
    【详解】
    设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:1000(1+x)2=1.
    故答案为:1000(1+x)2=1.
    此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
    12、x-1
    【解析】
    分别对2个多项式因式分解,再取公因式.
    【详解】
    解:多项式=a(x+1)(x-1)
    2x2-4x+2=2(x-1)2
    所以两个多项式的公因式是x-1
    本题考查公因式相关,熟练掌握并利用求多项式公因式的方法进行分析是解题的关键.
    13、x≥-1
    【解析】
    根据二次根式的性质即可求解.
    【详解】
    依题意得x+1≥0,
    解得x≥-1
    故填:x≥-1
    此题主要考查二次根式的性质,解题的关键是熟知根号内被开方数为非负数.
    三、解答题(本大题共5个小题,共48分)
    14、(1)C;(2)①证明见解析;②,1
    【解析】
    试题分析:(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为矩形,故选C;
    (2)①证明:∵纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,∴AE=1.如图2:
    ∵△AEF,将它平移至△DE′F′,∴AF∥DF′,AF=DF′,∴四边形AFF′D是平行四边形.在Rt△AEF中,由勾股定理,得AF==5,∴AF=AD=5,∴四边形AFF′D是菱形;
    ②连接AF′,DF,如图1:
    在Rt△DE′F中E′F=FF′﹣E′F′=5﹣4=1,DE′=1,∴DF=
    ,在Rt△AEF′中EF′=EF+FF′=4+5=9,AE=1,∴AF′==1.
    考点:①图形的剪拼;②平行四边形的性质;③菱形的判定与性质;④矩形的判定;⑤平移的性质.
    15、-
    【解析】
    先化简二次根式,然后利用乘法的分配率进行计算,最后化成最简二次根式即可.
    【详解】
    原式=(4-)×÷5=(3-)÷5=-
    本题考查二次根式的混合运算,解答本题的关键是明确二次根式运算的法则和运算律.
    16、 (1)y=t(0≤t≤) (2)6小时
    【解析】
    (1) 将点代入函数关系式, 解得, 有
    将代入, 得, 所以所求反比例函数关系式为;
    再将代入, 得,所以所求正比例函数关系式为.
    (2) 解不等式, 解得,
    所以至少需要经过6小时后,学生才能进入教室.
    17、(1)见解析;(2)见解析.
    【解析】
    (1)根据条件,由ASA即可得出△ABE≌△CDF;
    (2)由全等三角形的性质得出AE=CF,由平行四边形的性质得出AD∥BC,AD=BC,证出DE=BF,即可得出四边形EBFD是平行四边形.
    【详解】
    证明:(1)∵四边形ABD是平行四边形,
    ∴AB=CD,∠BAD=∠DCB,
    ∴∠BAE=∠DCF,
    在△ABE和△CDF中,

    ∴△ABE≌△CDF(ASA);
    (2)∵△ABE≌△CDF,
    ∴AE=CF(全等三角形对应边相等),
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC,
    ∴AD+AE=BC+CF,
    即DE=BF,
    ∴四边形EBFD是平行四边形(一组对边平行且相等的四边形是平行四边形).
    本题主要考查了平行四边形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.
    18、10米
    【解析】
    设这个苗圃园垂直于墙的一边长为x米,则平行于墙的一边为(29+1-2x)米,根据此矩形苗圃园面积为100平方米列一元二次方程求解可得答案.
    【详解】
    解:设这个苗圃园垂直于墙的一边长为x米,则平行于墙的一边为(29+1-2x)米,
    由题意得: x(30-2x)=100,
    -2x+30x-100=0,x-15x+50=0
    (x-5)(x-10)=0,
    或,
    当x=5时,则平行于墙的一边为20米>18米,不符合题意,
    取x=10,
    答:垂直于墙的一边长为10米.
    本题主要考查一元二次方程的应用,根据已知条件列出方程式解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、.
    【解析】
    试题分析:原式=.
    考点:分式的化简.
    20、1
    【解析】
    将这五个数排序后,可知第3位的数是1,因此中位数是1.
    【详解】
    将这组数据排序得:15,15,1,19,21,处于第三位是1,因此中位数是1,
    故答案为:1.
    考查中位数的意义和求法,将一组数据排序后处在中间位置的一个数或两个数的平均数是中位数.
    21、1.
    【解析】
    试题分析:∵2<<3,∴5>>1,∴m=1,n=,∵,∴,化简得:,等式两边相对照,因为结果不含,∴且,解得a=3,b=﹣2,∴2a+b=2×3﹣2=6﹣2=1.故答案为1.
    考点:估算无理数的大小.
    22、2
    【解析】
    设AC与BD的交点为O,根据平行四边形的性质,可得AO=CO=1,BO=DO,根据勾股定理可得BO=,即可求BD的长.
    【详解】
    解:设AC与BD的交点为O
    ∵四边形ABCD是平行四边形
    ∴AD=BC=2,AD∥BC
    AO=CO=1,BO=DO
    ∵AC⊥BC
    ∴BO==
    ∴BD=2.
    故答案为2.
    本题考查了平行四边形的性质和勾股定理,关键是灵活运用平行四边形的性质解决问题.
    23、4
    【解析】
    利用勾股定理:a2+b2=c2,直接解答即可
    【详解】
    ∵∠C=90°
    ∴a2+b2=c2
    ∵b=7,c=9,
    ∴a===4
    故答案为4
    本题考查了勾股定理,对应值代入是解决问题的关键
    二、解答题(本大题共3个小题,共30分)
    24、①当0≤x≤3时,y与x之间的函数关系式为y=5x;
    ②;
    ③1<x<1.
    【解析】
    ①当0≤x≤3时,设y=mx(m≠0),根据图象当x=3时,y=15求出m即可;
    ②当3<x≤12时,设y=kx+b(k≠0),根据图象过点(3,15)和点(12,0),然后代入求出k和b即可;
    ③根据函数图象的增减性求出x的取值范围即可.
    【详解】
    解:①当0≤x≤3时,设y=mx(m≠0),
    则3m=15,
    解得m=5,
    ∴当0≤x≤3时,y与x之间的函数关系式为y=5x;
    ②当3<x≤12时,设y=kx+b(k≠0),
    ∵函数图象经过点(3,15),(12,0),
    ∴,解得:,
    ∴当3<x≤12时,y与x之间的函数关系式y=﹣x+20;
    ③当y=5时,由5x=5得,x=1;
    由﹣x+20=5得,x=1.
    ∴由图象可知,当容器内的水量大于5升时,时间x的取值范围是1<x<1.
    一次函数的解析式及其性质是本题的考点,根据题意读懂图象是解题的关键.
    25、(1)y=x+ ,y=﹣;(2)∠ACO=30°;
    【解析】
    (1)根据A、B两点坐标求得一次函数解析式,再求得D点的具体坐标,从而求得反比例函数的解析式.
    (2)联立函数解析式求得C点坐标,过C点作CH⊥x轴于H,证明为等腰三角形,根据特殊直角三角形求得的度数,从而求得的度数.
    【详解】
    解:(1)设直线AB的解析式为: ,
    把A(0,),B(2,0)分别代入,
    得,,
    解得 =,b=.
    ∴直线AB的解析式为:y=x+;
    ∵点D(1,a)在直线AB上,
    ∴a=+=,即D点坐标为(1,),
    又∵D点(1,)在反比例函数的图象上,
    ∴k=1×=﹣,
    ∴反比例函数的解析式为:y=﹣;
    (2)由,解得或,
    ∴C点坐标为(3,﹣),过C点作CH⊥x轴于H,如图,
    ∵OH=3,CH=,
    ∴OC=,而OA=,
    ∴OA=OC,
    ∴∠OAC=∠OCA.
    又∵OB=2,
    ∴AB=,
    在Rt△AOB中,
    ∴∠OAB=30°,
    ∴∠ACO=30°
    本题考查了一次函数与反比例函数的交点问题,解题的关键是熟练掌握待定系数法.
    26、(1)y=—50x+136000;(2)111000 元.(3)若绿化村道的总费用不超过 120000 元,则最多可购买 B 种树苗 1 棵.
    【解析】分析:(1)设购买A种树苗x棵,则购买B种树苗(800﹣x)棵,根据总费用=(购买A种树苗的费用+种植A种树苗的费用)+(购买B种树苗的费用+种植B种树苗的费用),即可求出y(元)与x(棵)之间的函数关系式;
    (2)根据这批树苗种植后成活了 670 棵,列出关于x的一元一次方程,求出x的值,即可求解.
    (3)根据总费用不超过 120000 元,列出关于x的一元一次不等式,求解即可.
    详解:(1)设购买 A 种树苗 x 棵,则购买 B 种树苗(800—x)棵,依题意得:
    y=(100+20)x+(150+20)×(800—x)=—50x+136000
    (2)由题意得:80%x+90%(800—x)=670
    解得:x=500
    当 x=500 时,y=—50×500+136000=111000(元).
    答:若这批树苗种植后成活了 670 棵,则绿化村道的总费用需要 111000 元.
    (3)由(1)知购买 A 种树苗 x 棵,购买 B 种树苗(800—x)棵时,
    总费用 y=—50x+136000,由题意得:
    —50x+136000≤120000
    解得:x≥320
    ∴800—x≤1.
    故最多可购买 B 种树苗 1 棵.
    答:若绿化村道的总费用不超过 120000 元,则最多可购买 B 种树苗 1 棵.
    点睛:本题考查了一次函数的应用,一元一次方程的应用,一元一次不等式的应用.此题难度适中,解题的关键是理解题意,根据题意求得函数解析式、列出方程与不等式,明确不等关系的语句“不超过”的含义.
    题号





    总分
    得分
    树苗
    单价(元/棵)
    成活率
    植树费(元/棵)
    A
    100
    80%
    20
    B
    150
    90%
    20

    相关试卷

    2024年河北省石家庄市长安区九上数学开学质量检测模拟试题【含答案】:

    这是一份2024年河北省石家庄市长安区九上数学开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年河北省石家庄市外国语学校数学九上开学监测模拟试题【含答案】:

    这是一份2024年河北省石家庄市外国语学校数学九上开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年河北省石家庄市第九中学数学九上开学教学质量检测模拟试题【含答案】:

    这是一份2024年河北省石家庄市第九中学数学九上开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map