终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024年河南省淮阳区羲城中学九年级数学第一学期开学质量检测试题【含答案】

    立即下载
    加入资料篮
    2024年河南省淮阳区羲城中学九年级数学第一学期开学质量检测试题【含答案】第1页
    2024年河南省淮阳区羲城中学九年级数学第一学期开学质量检测试题【含答案】第2页
    2024年河南省淮阳区羲城中学九年级数学第一学期开学质量检测试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年河南省淮阳区羲城中学九年级数学第一学期开学质量检测试题【含答案】

    展开

    这是一份2024年河南省淮阳区羲城中学九年级数学第一学期开学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)边长是4且有一个内角为60°的菱形的面积为( )
    A.2B.4C.8D.16
    2、(4分)平行四边形中,若,则的度数为( ).
    A.B.C.D.
    3、(4分)一次函数y=﹣2x﹣3的图象不经过( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    4、(4分)下列命题是假命题的是( )
    A.若 x<y,则 x+2009<y+2009B.单项式的系数是 4
    C.若|x-1|+(y-3) =0,则 x=1,y=3D.平移不改变图形的形状和大小
    5、(4分)若关于x的不等式组的解集为x<2,则a的取值范围是( )
    A.a≥﹣2B.a>﹣2C.a≤﹣2D.a<﹣2
    6、(4分)如果a>b,下列各式中正确的是( )
    A.ac>bcB.a﹣3>b﹣3C.﹣2a>﹣2bD.
    7、(4分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是 ( )
    A.1B.1.5C.2D.2.5
    8、(4分)如图,在周长为 18cm 的▱ABCD 中,AC、BD 相交于点 O,OE⊥BD 交 AD 于 E,则△ABE的周长为( )
    A.6cmB.7cm
    C.8cmD.9cm
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在RtACB中,∠C=90°,AB=2,以点B为圆心,适当长为半径画弧,分别交边AB,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点P,作射线BP交AC于点D,若CD=1,则ABD的面积为_____.
    10、(4分)如图,在平行四边形中,对角线,相交于点,,点,分别是,的中点,连接,于点,交于点,若,,则线段的长为__.
    11、(4分)一个多边形的内角和与外角和的比是4:1,则它的边数是 .
    12、(4分)解关于x的方程产生增根,则常数m的值等于________.
    13、(4分)点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,点E,F是平行四边形ABCD对角线BD上的点,且BF=DE.求证:AE=CF.
    15、(8分)如图1,平面直角坐标系中,直线AB:y=﹣x+b交x轴于点A(8,0),交y轴正半轴于点B.
    (1)求点B的坐标;
    (2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB上一点,过点P作y轴的平行线交直线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;
    (3)在(2)的条件下,M为CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标及PN的长度;若不存在,请说明理由.
    16、(8分)如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.
    (1)求证:四边形AGPH是矩形;
    (2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.

    17、(10分)某校为了弘扬中华传统文化,了解学生整体阅读能力,组织全校的1000名学生进行一次阅读理解大赛.从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制了频数分布表和频数分布直方图:
    (1)频数分布表中的 ;
    (2)将上面的频数分布直方图补充完整;
    (3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,估计该校进入决赛的学生大约有 人.
    18、(10分)如图所示,已知△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣6,0),C(﹣1,0).
    (1)请直接写出点A关于原点O对称的点坐标;
    (1)将△ABC向右平移6个单位,再向上平移3个单位,得到△A1B1C1,画出△A1B1C1;
    (3)将△ABC绕点O逆时针转90°,得到△A1B1 C1,画出△A1B1 C1.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在□ABCD中,对角线AC、BD相交于O,AC+BD=10,BC=3,则△AOD的周长为 .
    20、(4分)如图,将正方形放在平面直角坐标系中,是坐标原点,点的坐标为,则点的坐标为__________.
    21、(4分)关于x的一元一次方程ax+b=0的根是x=m,则一次函数y=ax+b的图象与x轴交点的坐标是_____.
    22、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AD,AD=6,AB=10,则△AOB的面积为 _________________
    23、(4分)在一个矩形中,若一个角的平分线把一条边分成长为3cm和4cm的两条线段,则该矩形周长为_________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)作图题:在△ABC中,点D是AB边的中点,请你过点D作△ABC的中位线DE交AC于点E.(不写作法,保留作图痕迹)
    25、(10分)我市进行运河带绿化,计划种植银杏树苗,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:
    甲:购买树苗数量不超过500棵时,销售单价为800元棵;超过500棵的部分,销售单价为700元棵.
    乙:购买树苗数量不超过1000棵时,销售单价为800元棵;超过1000棵的部分,销售单价为600元棵.
    设购买银杏树苗x棵,到两家购买所需费用分别为元、元
    (1)该景区需要购买800棵银杏树苗,若都在甲家购买所要费用为______元,若都在乙家购买所需费用为______元;
    (2)当时,分别求出、与x之间的函数关系式;
    (3)如果你是该景区的负责人,购买树苗时有什么方案,为什么?
    26、(12分)如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:
    (1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;
    (2)求在平移过程中线段AB扫过的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据菱形内角度数及边长求出一边上的高,利用边长乘以高即可求出面积.
    【详解】
    解:如图,过点A作AE⊥BC于点E,

    ∴ .
    ∴菱形面积为 4×2=8.
    故选:C.
    本题主要考查菱形的面积,能够求出菱形边上的高是解题的关键.
    2、B
    【解析】
    根据平行四边形的性质:邻角互补,对角线相等即可解答
    【详解】
    在平行四边形中,
    ∴,
    故选:B.
    本题考查平行四边形的性质,解题关键是熟练掌握平行四边形的角的性质:邻角互补,对角线相等.
    3、A
    【解析】
    考查一次函数的图像特征.
    点拨:由得系数符号和常数b决定.
    解答:对于一次函数,当时直线经过第一、二、四象限或第二、三、四象限;,故直线经过第二、三、四象限,不经过第一象限.
    4、B
    【解析】
    非负数的性质:几个非负数的和是0,则这几个非负数都是0;平移的性质:平移前后的两个图形全等.
    【详解】
    A. 根据等式的性质,故正确;
    B. 单项式的系数是 ,故错误;
    C. 若|x−1|+(y−3) =0,则x=1,y=3,故正确;
    D. 平移不改变图形的形状和大小,故正确.
    故选B.
    此题考查命题与定理,解题关键在于掌握各性质定义.
    5、C
    【解析】
    分别求出每个不等式的解集,根据不等式组的解集为x<2可得关于a的不等式,解之可得.
    【详解】
    解不等式,得:x<2,
    解不等式<x,得:x<﹣a,
    ∵不等式组的解集为x<2,
    ∴﹣a≥2,
    解得:a≤﹣2,
    故选:C.
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    6、B
    【解析】
    根据不等式的性质对各选项分析判断即可得解.
    【详解】
    解:A、a>b不等式两边都乘以c,c的正负情况不确定,所以ac>bc不一定成立,故本选项错误;
    B、a>b不等式的两边都减去3可得a-3>b-3,故本选项正确;
    C、a>b不等式的两边都乘以-2可得-2a<-2b,故本选项错误;
    D、a>b不等式两边都除以2可得,故本选项错误.
    故选:B.
    本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
    7、C
    【解析】
    连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.
    【详解】
    连接AE,
    ∵AB=AD=AF,∠D=∠AFE=90°,
    由折叠的性质得:Rt△ABG≌Rt△AFG,
    在△AFE和△ADE中,
    ∵AE=AE,AD=AF,∠D=∠AFE,
    ∴Rt△AFE≌Rt△ADE,
    ∴EF=DE,
    设DE=FE=x,则CG=3,EC=6−x.
    在直角△ECG中,根据勾股定理,得:
    (6−x)2+9=(x+3)2,
    解得x=2.
    则DE=2.
    熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.
    8、D
    【解析】
    利用垂直平分线的性质即可求出BE=DE,所以△ABE的周长=AB+AE+BE=AB+AD.
    【详解】
    ∵▱ABCD的对角线AC,BD相交于点O,
    ∴O为BD的中点,
    ∵OE⊥BD,
    ∴BE=DE,
    ∴△ABE的周长=AB+AE+BE=AB+AD=×18=9(cm),
    故答案为:D
    本题考查的是平行四边形的性质及线段垂直平分线的性质,解答此题的关键是将三角形的三边长转为平行四边形的一组邻边的长.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    过点D作DH⊥AB于H.利用角平分线的性质定理求出DH,然后根据三角形的面积公式即可解决问题.
    【详解】
    解:如图,过点D作DH⊥AB于H.
    ∵DC⊥BC,DH⊥AB,BD平分∠ABC,
    ∴DH=CD=1,
    ∴S△ABD=•AB•DH=×2×1=,
    故答案为:.
    本题主要考查角平分线的尺规作图及性质,掌握角平分线的性质是解题的关键.
    10、.
    【解析】
    连接BE.首先证明△EMC,△EMB都是等腰直角三角形,再证明△ENF≌△MNB,得到EN=MN=5,由勾股定理即可得出BM的长,即可得BC的长度.
    【详解】
    设,
    点、点分别是、的中点,
    是的中位线,
    ,,

    四边形是平行四边形,
    ,,



    是等腰直角三角形,

    连接,




    易得,
    ,,
    中,由勾股定理得:,
    即,
    解得,,

    故答案为:.
    本题考查平行四边形的性质,三角形的中位线定理,勾股定理,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
    11、1.
    【解析】
    多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
    【详解】
    解:根据题意,得
    (n﹣2)•180=4360,
    解得:n=1.
    则此多边形的边数是1.
    故答案为1.
    12、
    【解析】
    先通过去分母,将分式方程化为整式方程,再根据增根的定义得出x的值,然后将其代入整式方程即可.
    【详解】
    两边同乘以得,
    由增根的定义得,
    将代入得,
    故答案为:.
    本题考查了解分式方程、增根的定义,掌握理解增根的定义是解题关键.
    13、-3
    【解析】
    点P(m+2,2m+1)向右平移1个单位长度后 ,正好落在y轴上,则
    三、解答题(本大题共5个小题,共48分)
    14、证明见解析.
    【解析】
    试题分析:根据平行四边形的性质可得AD∥BC,AD=BC,根据平行线的性质可得∠EDA=∠FBC,再加上条件ED=BF可利用SAS判定△AED≌△CFB,进而可得AE=CF.
    试题解析:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EDA=∠FBC,在△AED和△CFB中,∵AD=BC,∠ADE=∠CBF,BF=DE,∴△AED≌△CFB(SAS),∴AE=CF.
    考点:平行四边形的性质;全等三角形的判定与性质.
    15、 (1) B(0,6);(2) d=﹣t+10;(3)见解析.
    【解析】
    【分析】(1)把A(8,0)代入y=﹣x+b,可求解析式,再求B的坐标;(2)先求点C(0,﹣4),再求直线AC解析式,可设点P(t,﹣t+6),Q(t, t﹣4),所以d=(﹣t+6)﹣(t﹣4);过点M作MG⊥PQ于G,证△OAC≌△GMQ,得QG=OC=4,GM=OA=8;过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,得四边形GHRM是矩形,得HR=GM=8;设GH=RM=k,由△HNQ≌△RMN,得HN=RM=k,NR=QH=4+k,由HR=HN+NR,得k+4+k=8,可得GH=NH=RM=2,HQ=6,由Q(t,t﹣4),得N(t+2,t﹣4+6),代入y=﹣x+6,得t+2=﹣(t+2)+6,求出t=2,再求P(2,),N(4,3),可得PH=,NH=2,最后PN=.
    【详解】解:(1)∵y=﹣x+b交x轴于点A(8,0),
    ∴0=﹣×8+b,b=6,
    ∴直线AB解析式为y=﹣x+6,令x=0,y=6,B(0,6);
    (2)∵A(8,0),B(0,6),
    ∴OA=8,OB=6,
    ∵∠AOB=90°,
    ∴AB=10=BC,
    ∴OC=4,
    ∴点C(0,﹣4),设直线AC解析式为y=kx+b’,
    ∴,
    ∴,
    ∴直线AC解析式为y=x﹣4,
    ∵P在直线y=﹣x+6上,
    ∴可设点P(t,﹣t+6),
    ∵PQ∥y轴,且点Q在y=x﹣4 上,
    ∴Q(t, t﹣4),
    ∴d=(﹣t+6)﹣(t﹣4)=﹣t+10;
    (3)过点M作MG⊥PQ于G,
    ∴∠QGM=90°=∠COA,
    ∵PQ∥y轴,
    ∴∠OCA=∠GQM,
    ∵CQ=AM,
    ∴AC=QM,在△OAC与△GMQ中,

    ∴△OAC≌△GMQ,
    ∴QG=OC=4,GM=OA=8,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,
    ∴∠MGH=∠RHG=∠MRH=90°,
    ∴四边形GHRM是矩形,
    ∴HR=GM=8,可设GH=RM=k,
    ∵△MNQ是等腰直角三角形,
    ∴∠QMN=90°,NQ=NM,
    ∴∠HNQ+∠HQN=90°,
    ∴∠HNQ+∠RNM=90°,
    ∴∠RNM=∠HQN,
    ∴△HNQ≌△RMN,
    ∴HN=RM=k,NR=QH=4+k,
    ∵HR=HN+NR,
    ∴k+4+k=8,
    ∴k=2,
    ∴GH=NH=RM=2,
    ∴HQ=6,
    ∵Q(t,t﹣4),
    ∴N(t+2,t﹣4+6)即 N(t+2,t+2)
    ∵N在直线AB:y=﹣x+6上,
    ∴t+2=﹣(t+2)+6,
    ∴t=2,
    ∴P(2,),N(4,3),
    ∴PH=,NH=2,
    ∴PN=
    =.
    【点睛】本题考核知识点:一次函数综合应用.解题关键点:熟记一次函数性质,运用数形结合思想.
    16、 (1)证明见解析;(2)见解析.
    【解析】
    (1)根据“矩形的定义”证明结论;
    (2)连结AP.当AP⊥BC时AP最短,结合矩形的两对角线相等和面积法来求GH的值.
    【详解】
    (1)证明∵AC=9 AB=12 BC=15,
    ∴AC2=81,AB2=144,BC2=225,
    ∴AC2+AB2=BC2,
    ∴∠A=90°.
    ∵PG⊥AC,PH⊥AB,
    ∴∠AGP=∠AHP=90°,
    ∴四边形AGPH是矩形;
    (2)存在.理由如下:
    连结AP.
    ∵四边形AGPH是矩形,
    ∴GH=AP.
    ∵当AP⊥BC时AP最短.
    ∴9×12=15•AP.
    ∴AP=.
    本题考查了矩形的判定与性质.解答(2)题时,注意“矩形的对角线相等”和“面积法”的正确应用.
    17、(1)14;(2)补图见解析;(3)1.
    【解析】
    (1)根据第1组频数及其频率求得总人数,总人数乘以第2组频率可得a的值;
    (2)把上面的频数分布直方图补充完整;
    (3)根据样本中90分及90分以上的百分比,乘以1000即可得到结果.
    【详解】
    (1)∵被调查的总人数为6÷0.12=50人,
    ∴a=50×0.28=14,
    故答案为:14;
    (2)补全频数分布直方图如下:
    (3)估计该校进入决赛的学生大约有1000×0.08=1人,
    故答案为:1.
    此题考查了用样本估计总体,频数(率)分布表,以及频数(率)分布直方图,弄清题中的数据是解本题的关键.
    18、(1)(1,-3);(1)详见解析;(3)详见解析
    【解析】
    (1)根据关于原点对称的点的特征即可;
    (1)根据平移方向画出图形即可;
    (3)根据旋转角度及旋转方向画出图形即可.
    【详解】
    (1)点A关于原点对称的点坐标为(1,-3)
    (1)如下图所示,
    (3)如下图所示,
    本题考查了关于原点对称的点的特征及平移画图,旋转画图问题,解题的关键是明确平移方向或旋转方向.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、8
    【解析】试题分析:根据平行四边形的性质可得:OA+OD=(AC+BD)=5,AD=BC=3,则△AOD的周长为5+3=8.
    考点:平行四边形的性质.
    20、
    【解析】
    过点E作EI⊥x轴于I,过点G作GH⊥x轴于H,根据同角的余角相等求出∠OEI=∠GOH,再利用“角角边”证明△EOI和△OGH全等,根据全等三角形对应边相等可得OH=EI,EI=OI,然后根据点G在第二象限写出坐标即可.
    【详解】
    解:过点E作EI⊥x轴于I,过点G作GH⊥x轴于H,如图所示:
    ∵四边形OEFG是正方形,
    ∴OE=OG,∠EOG =90°,
    ∴∠GOH+∠EOI=90°,
    又∵∠OEI +∠EOI=90°,
    ∴∠OEI =∠GOH,
    在△EOI和△OGH中,,
    ∴△EOI≌△OGH(AAS),
    ∴OH=EI=3,GH=OI=2,
    ∵点G在第二象限,
    ∴点G的坐标为(-3,2).
    故答案为(-3,2).
    本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键.
    21、(m,0).
    【解析】分析:关于x的一元一次方程ax+b=0的根是x=m,即x=m时,函数值为0,所以直线过点(m,0),于是得到一次函数y=ax+b的图象与x轴交点的坐标.
    详解:关于x的一元一次方程ax+b=0的根是x=m,则一次函数y=ax+b的图象与x轴交点的坐标为(m,0).
    故答案为:(m,0).
    点睛:本题主要考查了一次函数与一元一次方程:任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
    22、12
    【解析】
    ∵BD⊥AD,AD=6,AB=10,
    ,
    ∴ .
    ∵四边形ABCD是平行四边形,

    23、20或22
    【解析】
    根据题意矩形的长为7,宽为3或4,因此计算矩形的周长即可.
    【详解】
    根据题意可得矩形的长为7
    当形成的直角等腰三角形的直角边为3时,则矩形的宽为3
    当形成的直角等腰三角形的直角边为4时,则矩形的宽为4
    矩形的宽为3或4
    周长为或
    故答案为20或22
    本题主要考查等腰直角三角形的性质,关键在于确定宽的长.
    二、解答题(本大题共3个小题,共30分)
    24、如图所示,线段DE即为所求,见解析.
    【解析】
    作AC的垂直平分线,再连接DE即可.
    【详解】
    如图所示,线段DE即为所求:
    此题考查作图问题,关键是根据垂直平分线的作图解答.
    25、 (1)610000元,640000元;(2),;(3)见解析.
    【解析】
    (1)由单价数量及可以得出购买树苗需要的费用;
    (2)根据当,由单价数量就可以得出购买树苗需要的费用表示出、与之间的函数关系式;
    (3)分类讨论,当,时,时,表示出、的关系式,就可以求出结论.
    【详解】
    解:由题意,得.
    元,
    元;
    故答案为;640000
    当时,,,x为正整数,
    当时,到两家购买所需费用一样;
    时,甲家有优惠而乙家无优惠,所以到甲家购买合算;

    当时,,解得,当时,到两家购买所需费用一样;
    当y甲乙时,,
    当时,到甲家购买合算;
    当y甲乙时,,
    当时,到乙家购买合算.
    综上所述,当时或时,到两家购买所需费用一样;当时,到甲家购买合算;当时,到乙家购买合算.
    本题考查了运用一次函数的解析式解实际问题的运用,方案设计的运用,单价×数量=总价,解答时求出一次函数的解析式是关键.
    26、(1)图见解析,;(2)25
    【解析】
    (1)由题意直接根据图形平移的性质画出△A′B′C′,并写出各点坐标即可;
    (2)由题意可知AB扫过的部分是平行四边形,根据平行四边形的面积公式即可得出结论.
    【详解】
    解:(1)平移后的△A′B′C′如图所示,
    观察图象可知点A′、B′、C′的坐标分别为:.
    (2)由图象以及平移的性质可知线段AB扫过部分形状为平行四边形,且底为5,高为5,
    故线段AB扫过的面积为:.
    本题考查的是作图-平移变换,熟练掌握图形平移不变性的性质是解答此题的关键.
    题号





    总分
    得分
    批阅人
    分组/分
    频数
    频率
    50≤x<60
    6
    0.12
    60≤x<70
    0.28
    70≤x<80
    16
    0.32
    80≤x<90
    10
    0.20
    90≤x≤100
    4
    0.08

    相关试卷

    2024-2025学年河南省淮阳县羲城中学数学九上开学达标测试试题【含答案】:

    这是一份2024-2025学年河南省淮阳县羲城中学数学九上开学达标测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年河南省淮阳县羲城中学九年级数学第一学期期末质量检测试题含答案:

    这是一份2023-2024学年河南省淮阳县羲城中学九年级数学第一学期期末质量检测试题含答案,共7页。试卷主要包含了答题时请按要求用笔,已知点A等内容,欢迎下载使用。

    河南省淮阳区羲城中学2023-2024学年数学九年级第一学期期末教学质量检测试题含答案:

    这是一份河南省淮阳区羲城中学2023-2024学年数学九年级第一学期期末教学质量检测试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map