2024年河南省南阳唐河县联考数学九年级第一学期开学考试模拟试题【含答案】
展开这是一份2024年河南省南阳唐河县联考数学九年级第一学期开学考试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数分别交轴、轴于,两点,在轴上取一点,使为等腰三角形,则这样的点最多有几个( )
A.5B.4C.3D.2
2、(4分)数据3,7,2,6,6的中位数是( )
A.6B.7C.2D.3
3、(4分)某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为( )
A.B.C.D.
4、(4分)函数中自变量x的取值范围是( )
A.≥-3B.≥-3且C.D.且
5、(4分)下面哪个点在函数的图象上( )
A.B.C.D.
6、(4分)如图,梯子靠在墙上,梯子的底端到墙根的距离为米,梯子的顶端到地面距离为米.现将梯子的底端向外移动到,使梯子的底端到墙根的距离等于米,同时梯子的顶端下降至,那么的值( )
A.小于米B.大于米C.等于米D.无法确定
7、(4分)如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为( )
A.36°B.18°C.27°D.9°
8、(4分)一个正比例函数的图象经过(1,﹣3),则它的表达式为( )
A.y=﹣3xB.y=3xC.y=D.y=﹣
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒lcm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为_____.
10、(4分)若a<0,则化简的结果为__________.
11、(4分)如图,小明用三个等腰三角形(图中①②③)拼成了一个平行四边形ABCD,且,则=________ 度
12、(4分)计算:的结果是________.
13、(4分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=2,S乙2=1.5,则射击成绩较稳定的是_____________(填“甲”或“乙“).
三、解答题(本大题共5个小题,共48分)
14、(12分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:,精确到,抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.
请你根据图中提供的信息,回答下列问题:
(1)求出扇形统计图中百分数的值为_____,所抽查的学生人数为______.
(2)求出平均睡眠时间为8小时的人数,并补全条形统计图.
(3)求出这部分学生的平均睡眠时间的众数和平均数.
(4)如果该校共有学生1800名,请你估计睡眠不足(少于8小时)的学生数.
15、(8分)如图,在中,点分别在边上,已知,.求证:四边形是平行四边形.
16、(8分)如图,在“飞镖形”中,、、、分别是、、、的中点.
(1)求证:四边形是平行四边形;
(2)若,那么四边形是什么四边形?
17、(10分)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.
18、(10分)如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)求证:四边形ADCF是菱形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)乐乐参加了学校广播站招聘小记者的三项素质测试,成绩(百分制)如下:采访写作70分,计算机操作60分,创意设计80分.如果采访写作、计算机操作和创意设计的成绩按5:2:3计算,那么他的素质测试的最终成绩为__________________分.
20、(4分)如图,EF⊥AD,将平行四边形ABCD沿着EF对折.设∠1的度数为n°,则∠C=______.(用含有n的代数式表示)
21、(4分)如图,在正方形的外侧,作等边,则的度数是__________.
22、(4分)①_________;②_________;③_________.
23、(4分)如图放置的两个正方形的边长分别为和,点为中点,则的长为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图①,四边形和四边形都是正方形,且,,正方形固定,将正方形绕点顺时针旋转角().
(1)如图②,连接、,相交于点,请判断和是否相等?并说明理由;
(2)如图②,连接,在旋转过程中,当为直角三角形时,请直接写出旋转角的度数;
(3)如图③,点为边的中点,连接、、,在正方形的旋转过程中,的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.
25、(10分)先化简,再求值:,且x为满足﹣3<x<2的整数.
26、(12分)如图,直线与x轴交于点,直线与x轴、y轴分别交于B、C两点,并与直线相交于点D,若.
求点D的坐标;
求出四边形AOCD的面积;
若E为x轴上一点,且为等腰三角形,写出点E的坐标直接写出答案.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
首先根据题意,求得与的坐标,然后利用勾股定理求得的长,再分别从,,去分析求解,即可求得答案.
【详解】
解:当时,,当时,,
,,
,
①当时,,
;
②当时,,,
③当时,设的坐标是,,,
,由勾股定理得:,
解得:,
的坐标是,,
这样的点最多有4个.
故选:B.
此题考查了等腰三角形的性质、一次函数的性质以及勾股定理.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.
2、A
【解析】
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
【详解】
解:将数据小到大排列 2,3,6,6,7,
所以中位数为6,
故选A.
本题考查了中位数,正确理解中位数的意义是解题的关键.
3、D
【解析】
解:原来所用的时间为:,实际所用的时间为:,所列方程为:.故选D.
点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x套,结果提前5天加工完成,可列出方程求解.
4、B
【解析】
分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.
解答:解:∵≥0,
∴x+3≥0,
∴x≥-3,
∵x-1≠0,
∴x≠1,
∴自变量x的取值范围是:x≥-3且x≠1.
故选B.
5、B
【解析】
把各点坐标代入解析式即可求解.
【详解】
A. ,y=4×1-2=2≠-2,故不在直线上;
B. ,y=4×3-2=10,故在直线上;
C. ,y=4×0.5-2=0,故不在直线上;
D. ,y=4×(-3)-2=-14,故不在直线上.
故选B.
此题主要考查一次函数的图像,解题的关键是熟知坐标的代入求解.
6、A
【解析】
由题意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移动过程中长短不变,所以AB=A′B′,又由题意可知OA′=3,利用勾股定理分别求OB′长,把其相减得解.
【详解】
解:在直角三角形AOB中,因为OA=2,OB=7
由勾股定理得:AB=,
由题意可知AB=A′B′=,
又OA′=3,根据勾股定理得:OB′=2,
∴BB′=7-2<1.
故选A.
本题考查了勾股定理的应用,解题时注意勾股定理应用的环境是在直角三角形中.
7、B
【解析】
试题解析:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,
又因为DE⊥AC,所以∠DCE=90°-36°=54°,
根据矩形的性质可得∠DOC=180°-2×54°=72°
所以∠BDE=180°-∠DOC-∠DEO=18°
故选B.
8、A
【解析】
设正比例函数解析式为y=kx(k≠0),然后将点(1,-3)代入该函数解析式即可求得k的值.
【详解】
设正比例函数解析式为y=kx(k≠0).则根据题意,得
﹣3=k,解得k=﹣3
∴正比例函数的解析式为:y=﹣3x
故选A.
本题考查了待定系数法求正比例函数解析式.此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
作PD⊥BC于D,PE⊥AC于E,如图,AP=t,BQ=tcm,(0≤t<6)
∵∠C=90°,AC=BC=6cm,
∴△ABC为直角三角形,
∴∠A=∠B=45°,
∴△APE和△PBD为等腰直角三角形,
∴PE=AE=AP=tcm,BD=PD,
∴CE=AC﹣AE=(6﹣t)cm,
∵四边形PECD为矩形,
∴PD=EC=(6﹣t)cm,
∴BD=(6﹣t)cm,
∴QD=BD﹣BQ=(6﹣1t)cm,
在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,
在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,
∵四边形QPCP′为菱形,
∴PQ=PC,
∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,
∴t1=1,t1=6(舍去),
∴t的值为1.
故答案为1.
【点睛】
此题主要考查了菱形的性质,勾股定理,关键是要熟记定理的内容并会应用 .
10、-a
【解析】
直接利用二次根式的化简的知识求解即可求得答案.
【详解】
∵a<0,∴=|a|=﹣a.
故答案为﹣a.
本题考查了二次根式的化简.注意=|a|.
11、72或
【解析】
分析:分两种情况讨论,分别构建方程即可解决问题.
详解:由题意可知:AD=DE,∴∠DAE=∠DEA,设∠DAE=∠DEA=x.
∵四边形ABCD是平行四边形,∴CD∥AB,∠C=∠DAB,∴∠DEA=∠EAB=x,∴∠C=∠DAB=2x.
①AE=AB时,若BE=BC,则有∠BEC=∠C,即(180°﹣x)=2x,解得:x=36°,∴∠C=72°;
若EC=EB时,则有∠EBC=∠C=2x.
∵∠DAB+∠ABC=180°,∴4x+(180°﹣x)=180°,解得:x=,∴∠C=,
②EA=EB时,同法可得∠C=72°.
综上所述:∠C=72°或.
故答案为72°或.
点睛:本题考查了平行四边形的性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
12、4
【解析】
按照二次根式的乘、除运算法则运算即可求解.
【详解】
解:原式=
故答案为:4.
本题考查二次根式的乘除运算法则,熟练掌握运算公式是解决此类题的关键.
13、乙
【解析】
直接根据方差的意义求解.方差通常用s2来表示,计算公式是:s2= [(x1-x¯)2+(x2-x¯)2+…+(xn-x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
【详解】
解:∵S甲2=2,S乙2=1.5,
∴S甲2>S乙2,
∴乙的射击成绩较稳定.
故答案为:乙.
本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.
三、解答题(本大题共5个小题,共48分)
14、(1)45%,60人;(2)18人,条形统计图见解析;(3)众数7,平均数7.2;(4)1170人.
【解析】
(1)用1减去每天的平均睡眠时间为6小时,8小时,9小时所占的百分比即可求出a的值,用每天的平均睡眠时间为6小时的人数除以其所占的百分比即可得到总人数;
(2)用总人数乘以每天的平均睡眠时间为8小时所占的百分比即可求出睡眠时间为8小时的人数,用总人数乘以a的值即可求出睡眠时间为7小时的人数,然后即可补全条形统计图;
(3)根据众数和平均数的定义计算即可;
(4)先计算出睡眠时间少于8小时的人所占的百分比,然后用总人数1800乘以这个百分比即可得出答案.
【详解】
(1) ,
所抽查的学生人数为(人);
(2)平均睡眠时间为8小时的人数为(人),
平均睡眠时间为7小时的人数为(人),
条形统计图如下:
(3)由扇形统计图可知,睡眠时间为7小时的人数最多,所以这部分学生的平均睡眠时间的众数为7,平均数为 ;
(4) (人)
本题主要考查条形统计图和扇形统计图,掌握条形统计图和扇形统计图以及众数,平均数的求法是解题的关键.
15、见解析
【解析】
根据题意证明EF∥AB,即可解答
【详解】
证明:∵DE∥BC,
∴∠ADE=∠B.
∵∠ADE=∠EFC,
∴∠EFC=∠B.
∴EF∥AB,
∴四边形BDEF是平行四边形.
此题考查平行四边形的判定,平行线的性质,解题关键在于证明EF∥AB
16、 (1)见解析;(2)见解析.
【解析】
(1)连接AC,根据三角形的中位线的性质即可求解;
(2)根据菱形的判定定理即可求解.
【详解】
(1)证明:连接.
∵、、、分别是、、、的中点,
∴、分别是、的中位线,
∴,,,,
∴,,
∴四边形是平行四边形.
(2)解:四边形是菱形.理由如下:
∵,,,
∴,又由(1)可知四边形是平行四边形,
∴四边形是菱形.
此题主要考查平行四边形的判定与性质,解题的关键是熟知菱形的判定定理与平行四边形的的判定与性质.
17、(1)详见解析;(2)详见解析
【解析】
(1)根据平行四边形的性质、等腰三角形的性质,利用全等三角形的判定定理SAS可以证得△ADC≌△ECD;
(2)利用等腰三角形的“三合一”性质推知AD⊥BC,即∠ADC=90°;由平行四边形的判定定理(对边平行且相等是四边形是平行四边形)证得四边形ADCE是平行四边形,所以有一个角是直角的平行四边形是矩形.
【详解】
(1)∵四边形ABDE是平行四边形,
∴AB∥DE,AB=DE;
∴∠B=∠EDC;
又∵AB=AC,
∴AC=DE,∠B=∠ACB,
∴∠EDC=∠ACD;
∵在△ADC和△ECD中,
,
∴△ADC≌△ECD(SAS);
(2)∵四边形ABDE是平行四边形(已知),
∴BD∥AE,BD=AE(平行四边形的对边平行且相等),
∴AE∥CD;
又∵BD=CD,
∴AE=CD,
∴四边形ADCE是平行四边形(对边平行且相等的四边形是平行四边形);
在△ABC中,AB=AC,BD=CD,
∴AD⊥BC,
∴∠ADC=90°,
∴▱ADCE是矩形.
18、 (1)见解析;(2)见解析.
【解析】
(1)利用平行线的性质及中点的定义,可利用AAS证得结论;
(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
【详解】
证明:(1)∵AF∥BC
∴∠AFE=∠DBE
∵E是AD中点,
∴AE=DE
在△AEF和DEB中
∴△AEF≌△DEB(AAS)
(2)在Rt△ABC中,D是BC的中点,
所以,AD=BD=CD
又AF∥DB,且AF=DB,
所以,AF∥DC,且AF=DC,
所以,四边形ADCF是菱形.
本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、71
【解析】
根据加权平均数的定义计算可得.
【详解】
他的素质测试的最终成绩为=71(分),
故答案为:71分.
本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.
20、180°﹣n°
【解析】
由四边形ABCD是平行四边形,可知∠B=180°﹣∠C;再由由折叠的性质可知,∠GHC=∠C,即可得∠GHB=180°﹣∠C;根据三角形的外角的性质可知∠1=∠GHB+∠B=360°﹣2∠C,即可得360°﹣2∠C=n°,由此求得∠C=180°﹣n°.
【详解】
∵四边形ABCD是平行四边形,
∴∠B=180°﹣∠C,
由折叠的性质可知,∠GHC=∠C,
∴∠GHB=180°﹣∠C,
由三角形的外角的性质可知,∠1=∠GHB+∠B=360°﹣2∠C,
∴360°﹣2∠C=n°,
解得,∠C=180°﹣n°,
故答案为:180°﹣n°.
本题考查的是平行四边形的性质及图形翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.
21、
【解析】
先求出的度数,即可求出.
【详解】
解:由题意可得,,
故答案为:
本题考查了等腰与等边三角形的性质,等腰三角形的两底角相等,等边三角行的三条边都相等,三个角都相等,灵活应用等腰及等边三角形的性质是解题的关键.
22、①, ②, ③.
【解析】
①根据二次根式的性质化简即可解答
②根据立方根的性质计算即可解答
③根据积的乘方,同底数幂的除法,进行计算即可解答
【详解】
①=
②=-3
③=4x =4x
此题考查二次根式的性质,同底数幂的除法,解题关键在于掌握运算法则
23、
【解析】
连接AC,AF,证明△ACF为直角三角形,再利用直角三角形斜边上的中线等于斜边的一半即可求解.
【详解】
如图,连接AC,AF,则AC,AF为两正方形的对角线,
∴∠CAF=∠CAB+∠FAE=45°+45°=90°
∴△ACF为直角三角形,
延长CB交FH于M,
∴CM=4+8=12,FM=8-4=4
在Rt△CMF中,CF=
∵点为中点,
∴AG=CF=
此题主要考查正方形的性质,解题的关键是熟知直角三角形斜边上的中线等于斜边的一半.
二、解答题(本大题共3个小题,共30分)
24、(1)相等,理由见解析;(2)和;(3)存在,最大值为.
【解析】
(1)由四边形ABCD和四边形CEFG都是正方形知BC=CD,CF=CE,∠BCD=∠GCE=90°,从而得∠BCG=∠DCE,证△BCG≌△DCE得BG=DE;
(2)分两种情况求解可得;
(3)由,知当点P到BD的距离最远时,△BDP的面积最大,作PH⊥BD,连接CH、CP,则PH≤CH+CP,当P、C、H三点共线时,PH最大,此时△BDP的面积最大,据此求解可得.
【详解】
(1)证明:相等
∵四边形和四边形都是正方形,
∴,,,
∴,即,
∴;
∴BG=DE
(2)如图1,∠ACG=90°时,旋转角;
如图2,当∠ACG=90°时,旋转角;
综上所述,旋转角的度数为45°或225°;
(3)存在
∵如图3,在正方形中,,
∴,
∴当点到的距离最远时,的面积最大,
作,连接,,则
当三点共线时,最大,此时的面积最大.
∵,点为的中点,
∴
此时,,
∴.
本题是四边形的综合问题,解题的关键是掌握正方形的性质、旋转的性质、全等三角形的判定与性质等知识点.
25、-5
【解析】
根据分式的运算法则即可求出答案.
【详解】
原式=[+]÷=(+)•x=x﹣1+x﹣2=2x﹣3
由于x≠0且x≠1且x≠﹣2,
所以x=﹣1,
原式=﹣2﹣3=﹣5
本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
26、(1)点坐标为;(2);(3)点E的坐标为、、、,、、.
【解析】
先确定直线的解析式,进而求出点的坐标,再分两种情况:Ⅰ、当点在点右侧时,Ⅱ、当点在点左侧时,同Ⅰ的方法即可得出结论.
(1)把点坐标代入可得到,则,然后根据两直线相交的问题,通过解方程组得到点坐标;
(2)先确定点坐标为然后利用四边形的面积进行计算即可;
(3)设出点的坐标,进而表示出,再利用等腰三角形的两腰相等建立方程,即可得出结论;
【详解】
解:把代入得,解得,
,
设,
,,
,
或,
点坐标为或,
Ⅰ、当时,
把代入得,解得,
,
解方程组得,
点坐标为;
当时,,
点坐标为,
四边形AOCD的面积
;
设,
,,
,,,
是等腰三角形,
当时,
,
或,
或
当时,
,
或舍
,
当时,
,
,
,
Ⅱ、当点时,
把代入得,解得,
,
解方程组,得,
点坐标为;
当时,,
点坐标为,
四边形AOCD的面积
;
设
,,
,,
当时,
,
或,
或
当时,
,
或舍
,
当时,
,
,
,
综上所述,点E的坐标为、、、,、、.
此题是一次函数综合题,主要考查了待定系数法,坐标轴上点的坐标特征,两直线的交点坐标的确定,等腰三角形的性质,分类讨论的思想解决问题是解本题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024年河南省南阳市桐柏县数学九年级第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年河南省南阳市方城县数学九年级第一学期开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年河南省南阳南召县联考九年级数学第一学期开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。