2024年黑龙江省大庆市大庆中学九上数学开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F,若小敏行走的路程为3100m,则小聪行走的路程为( )m.
A.3100B.4600C.3000D.3600
2、(4分)如图,平面直角坐标系中,在边长为1的正方形的边上有—动点沿正方形运动一周,则的纵坐标与点走过的路程之间的函数关系用图象表示大致是( )
A. B. C. D.
3、(4分)等腰三角形的一个外角为140°,那么底角等于( )
A.40° B.100° C.70° D.40°或70°
4、(4分)如图,在▱ABCD中,BM是∠ABC的角平分线且交CD于点M,MC=2,▱ABCD的周长是16,则DM等于( )
A.1B.2C.3D.4
5、(4分)生物学家发现了一种病毒,其长度约为,将数据0. 00000032用科学记数法表示正确的是( )
A.B.C.D.
6、(4分)一组数据、、、、、的众数是( )
A.B.C.D.
7、(4分)如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是( )
A.120°B.90 °C.60°D.30°
8、(4分)直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为( )
A.(-3,0)B.(-6,0)C.(-,0)D.(-,0)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若关于的分式方程有增根,则的值为__________.
10、(4分)如图,在直线m上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC,GN∥DC.设图中三个平行四边形的面积依次是S1,S,S3,若S1+S3=10,则S=__.
11、(4分)如图,一根垂直于地面的木杆在离地面高3m处折断,若木杆折断前的高度为8m,则木杆顶端落在地面的位置离木杆底端的距离为________m.
12、(4分)当k=_____时,100x2﹣kxy+49y2是一个完全平方式.
13、(4分)等边三角形的边长为6,则它的高是________
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值:÷(a-1+),其中a=.
15、(8分)如图,射线OA的方向是北偏东20°,射线OB的方向是北偏西40°,OD是OB的反向延长线,OC是∠AOD的平分线。
(1)求∠DOC的度数;
(2)求出射线OC的方向。
16、(8分)是正方形的边上一动点(不与重合), ,垂足为,将绕点旋转,得到,当射线经过点时,射线与交于点.
求证:;
在点的运动过程中,线段与线段始终相等吗?若相等请证明;若不相等,请说明理由.
17、(10分)如图,菱形纸片的边长为翻折使点两点重合在对角线上一点分别是折痕.设.
(1)证明:;
(2)当时,六边形周长的值是否会发生改变,请说明理由;
(3)当时,六边形的面积可能等于吗?如果能,求此时的值;如果不能,请说明理由.
18、(10分)计算:
(1);
(2)(﹣3)×.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若直线y=kx+3的图象经过点(2,0),则关于x的不等式kx+3>0的解集是_____.
20、(4分)若方程的两根,则的值为__________.
21、(4分)当x=________时,分式的值为0
22、(4分)在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=______
23、(4分)两条对角线______的四边形是平行四边形.
二、解答题(本大题共3个小题,共30分)
24、(8分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图1摆放时,都可以用“面积法”来证明,请你利用图1或图1证明勾股定理(其中∠DAB=90°)
求证:a1+b1=c1.
25、(10分)如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造PCOD.在线段OP延长线上一动点E,且满足PE=AO.
(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;
(2)当点P运动的时间为秒时,求此时四边形ADEC的周长是多少.
26、(12分)为传播“绿色出行,低碳生活”的理念,小贾同学的爸爸从家里出发,骑自行车去图书馆看书,图1表达的是小贾的爸爸行驶的路程(米)与行驶时间(分钟)的变化关系
(1)求线段BC所表达的函数关系式;
(2)如果小贾与爸爸同时从家里出发,小贾始终以速度120米/分钟行驶,当小贾与爸爸相距100米是,求小贾的行驶时间;
(3)如果小贾的行驶速度是米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出的取值范围。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
连接CG,由正方形的对称性,易知AG=CG,由正方形的对角线互相平分一组对角,GE⊥DC,易得DE=GE.在矩形GECF中,EF=CG.要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.
【详解】
连接GC,
∵四边形ABCD为正方形,
所以AD=DC,∠ADB=∠CDB=45°,
∵∠CDB=45°,GE⊥DC,
∴△DEG是等腰直角三角形,
∴DE=GE.
在△AGD和△GDC中,
,
∴△AGD≌△GDC(SAS)
∴AG=CG,
在矩形GECF中,EF=CG,
∴EF=AG.
∵BA+AD+DE+EF-BA-AG-GE,
=AD=1500m.
∵小敏共走了3100m,
∴小聪行走的路程为3100+1500=4600(m),
故选B.
本题考查了正方形的性质、全等三角形的性质和判定、矩形的性质及等腰三角形的性质.解决本题的关键是证明AG=EF,DE=GE.
2、D
【解析】
根据正方形的边长即可求出AB=BC=CD=DA=1,然后结合图象可知点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,再根据点P运动的位置逐一分析,用排除法即可得出结论.
【详解】
解:∵正方形ABCD的边长为1,
∴AB=BC=CD=DA=1
由图象可知:点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,
∴当点P从A到B运动时,即0<S≤1时,点P的纵坐标逐渐减小,故可排除选项A;当点P到点B时,即当S=1时,点P的纵坐标y=1,故可排除选项B;当点P从B到C运动时,即1<S≤2时,点P的纵坐标y恒等于1,故可排除C;当点P从C到D运动时,即2<S≤3时,点P的纵坐标逐渐增大;当点P从D到A运动时,即3<S≤4时,点P的纵坐标y恒等于2,
故选D.
此题考查的是根据图形上的点的运动,找出对应的图象,掌握横坐标、纵坐标的实际意义和根据点的不同位置逐一分析是解决此题的关键.
3、D
【解析】
试题分析:首先要讨论140°的角是顶角的外角还是底角的外角,再利用等腰三角形的性质和三角形内角和定理求出底角.
当等腰三角形的顶角的外角为140°,则顶角等于40°,所以底角等于70°;
当等腰三角形的底角的外角为140°,则底角等于40°.
故选D.
考点:本题考查了等腰三角形的性质
点评:学会运用分类讨论的思想解决问题.熟练掌握等腰三角形的性质和三角形的内角和定理.
4、D
【解析】
根据BM是∠ABC的平分线和AB∥CD,求出BC=MC=2,根据▱ABCD的周长是16,求出CD=6,得到DM的长.
【详解】
解:∵BM是∠ABC的平分线,
∴∠ABM=∠CBM,
∵AB∥CD,
∴∠ABM=∠BMC,
∴∠BMC=∠CBM,
∴BC=MC=2,
∵▱ABCD的周长是16,
∴BC+CD=8,
∴CD=6,
则DM=CD﹣MC=4,
故选:D.
本题考查的是平行四边形的性质和角平分线的定义,根据平行四边形的对边相等求出BC+CD是解题的关键,注意等腰三角形的性质的正确运用.
5、B
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.00000032=3.2×10-1.
故选:B.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
6、D
【解析】
根据众数的定义进行解答即可.
【详解】
解:6出现了2次,出现的次数最多,则众数是6;
故选:D.
此题考查了众数,众数是一组数据中出现次数最多的数.
7、B
【解析】
根据直角三角形两锐角互余解答.
【详解】
由题意得,剩下的三角形是直角三角形,
所以,∠1+∠2=90°.
故选:B.
此题考查直角三角形的性质,解题关键在于掌握其性质.
8、C
【解析】
作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.
直线y=x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),
因点C、D分别为线段AB、OB的中点,可得点C(﹣3,1),点D(0,1).
再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣1).
设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,1),D′(0,﹣1),
所以,解得:,
即可得直线CD′的解析式为y=﹣x﹣1.
令y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣,
所以点P的坐标为(﹣,0).故答案选C.
考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x-1)(x+1)=0,得到x=1或-1,然后代入化为整式方程的方程,满足即可.
【详解】
方程两边都乘(x-5),
得1-a=x-5,
∴x=7-a
∵原方程有增根,
∴最简公分母x-5=0,
解得x=5,
∴7-a=5;
∴a=1.
故答案为:1.
本题考查了分式方程的增根,难度适中.确定增根可按如下步骤进行:
①让最简公分母为0确定可能的增根;
②化分式方程为整式方程;
③把可能的增根代入整式方程,使整式方程成立的值即为分式方程的增根.
10、4
【解析】
根据题意,可以证明S与S1两个平行四边形的高相等,长是S1的2倍,S3与S的长相等,高是S的一半,这样就可以把S1和S3用S来表示,从而计算出S的
【详解】
解:根据正三角形的性质,∠ABC=∠HFG=∠DCE=60°,
∴AB∥HF//DC//GN,
设AC与FH交于P,CD与HG交于Q,
∴△PFC、△QCG和△NGE是正三角形,
∵F、G分别是BC、CE的中点,
故答案为:4.
本题主要考查了等边三角形的性质及平行四边形的面积求法,平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=ah.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高.
11、4
【解析】
由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出木杆顶端落在地面的位置离木杆底端的距离.
【详解】
一颗垂直于地面的木杆在离地面处折断,木杆折断前的高度为,
木杆顶端落在地面的位置离木杆底端的距离为.
故答案为:.
此题考查了勾股定理的应用,主要考查学生对勾股定理在实际生活中的运用能力.
12、±1.
【解析】
利用完全平方公式的结构特征判断即可得到结果.完全平方公式(a±b)2= a2±2ab+b2.
【详解】
∵100x2﹣kxy+49y2是一个完全平方式,
∴k=±1.
故答案为:±1.
此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
13、
【解析】
根据等边三角形的性质:三线合一,利用勾股定理可求解高.
【详解】
由题意得底边的一半是3,再根据勾股定理,得它的高为=3,
故答案为3.
本题考查的是等边三角形的性质,勾股定理,解答本题的关键是掌握好等腰三角形的三线合一:底边上的高、中线,顶角平分线重合.
三、解答题(本大题共5个小题,共48分)
14、;
【解析】
根据分式的加法和除法可以化简题目中的式子,然后将的值代入化简后的式子即可解答本题.
【详解】
解:,
,
,
,
当时,原式.
本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
15、(1)60°;(2)80°;
【解析】
(1)先求出∠AOB=60°,再求得∠AOD的度数,由角平分线得出∠AOC的度数,得出∠DOC的度数;(2)由(1)即可确定OC的方向.
【详解】
(1)∵OB的方向是北偏西40°,OA的方向是北偏东20°,
∴∠AOB=40°+20°=60°,
∴∠AOD=180°−60°=120°,
∵OC是∠AOD的平分线,
∴∠AOC=60°,
∴∠DOC=180°−(60°+60°)=60°;
(2)由(1)可知OC的方向为:20°+60°=80°,
∴射线OC的方向是北偏东80°.
此题考查方向角,解题关键在于掌握其定义.
16、见解析;,证明见解析
【解析】
(1)由旋转性质知∠BPN=∠CPD,再由∠PCD+∠BCP=∠PBN+∠BCP=90°知∠PCD=∠PBN,从而得证;
(2)先证△MPB∽△BPC得再由△PBN∽△PCD知从而得根据BC=CD可得答案.
【详解】
证明:由旋转可得.
四边形是正方形,
.
,
,
证明:
.
由可知
本题考查的是相似三角形的综合问题,解题的关键是掌握旋转变换的性质、相似三角形的判定与性质及正方形的性质等知识点,熟练掌握相关知识是解题的关键.
17、(1)见解析;(2)不变,见解析;(3)能,或
【解析】
(1)由折叠的性质得到BE=EP,BF=PF,得到BE=BF,根据菱形的性质得到AB∥CD∥FG,BC∥EH∥AD,于是得到结论;
(2)由菱形的性质得到BE=BF,AE=FC,推出△ABC是等边三角形,求得∠B=∠D=60°,得到∠B=∠D=60°,于是得到结论;
(3)记AC与BD交于点O,得到∠ABD=30°,解直角三角形得到AO=1,BO=,求得S四边形ABCD=2,当六边形AEFCHG的面积等于时,得到S△BEF+S△DGH=,设GH与BD交于点M,求得GM=x,根据三角形的面积列方程即可得到结论.
【详解】
解:折叠后落在上,
平分
,
四边形为菱形,同理四边形为菱形,
四边形为平行四边形,
.
不变.
理由如下:由得
四边形为菱形,
为等边三角
,
为定值.
记与交于点.
当六边形的面积为时,
由得
记与交于点
,
同理
即
化简得
解得,
∴当或时,六边形的面积为.
此题是四边形的综合题,主要考查了菱形的性质,等边三角形的判定和性质,三角形的面积公式,菱形的面积公式,解本题的关键是用x表示出相关的线段,是一道基础题目.
18、 (1);(2)3
【解析】
(1)异分母分式相加减,先通分变为同分母分式,然后再加减.
(2)利用二次根式的乘法法则运算;
【详解】
(1)解:原式=
=,
=;
(2)解:原式=
=3.
考查了二次根式的运算,解题关键是熟记其运算顺序.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
把点(2,0)代入解析式,利用待定系数法求出k的值,然后再解不等式即可.
【详解】
∵直线y=kx+3的图象经过点(2,0),
∴0=2k+3,
解得k=-,
则不等式kx+3>0为-x+3>0,
解得:x<2,
故答案为:x<2.
本题考查了待定系数法,解一元一次不等式,求出k的值是解题的关键.
20、1
【解析】
根据根与系数的关系求出,代入即可求解.
【详解】
∵是方程的两根
∴=-=4,==1
∴===4+1=1,
故答案为:1.
此题主要考查根与系数的关系,解题的关键是熟知=-,=的运用.
21、1
【解析】
根据分式值为0的条件直接求解即可.
【详解】
解:令且
∴
即时,分式的值为0.
故答案为:1.
本题考查了分式的值,分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.
22、8或
【解析】
分CE:BE=1:3和BE:CE=1:3两种情况分别讨论.
【详解】
解:(1)当CE:BE=1:3时,如图:
∵四边形ABCD是矩形,
∴∠BAD=∠B=90º,
∴∠BAE=∠BEA=45º,
∴BE=AB=2,
∵CE:BE=1:3,
∴CE=,
∴BC=2+=;
(2)当BE:CE=1:3时,如图:
同(1)可求出BE=2,
∵BE:CE=1:3,
∴CE=6,
∴BC=2+6=8.
故答案为8或.
本题考查了矩形的性质.
23、互相平分
【解析】
由“两条对角线互相平分的四边形是平行四边形”,即可得出结论.
【详解】
两条对角线互相平分的四边形是平行四边形;
故答案为:互相平分.
本题考查了平行四边形的判定;熟记“两条对角线互相平分的四边形是平行四边形”是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、见解析.
【解析】
图1,根据三个直角三角形的面积和等于梯形的面积列式化简即可得证;
图1,连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a,表示出S四边形ADCB=S△ACD+S△ABC,S四边形ADCB=S△ADB+S△DCB,两者相等,整理即可得证.
【详解】
利用图1进行证明:
证明:∵∠DAB=90°,点C,A,E在一条直线上,BC∥DE,则CE=a+b,
∵S四边形BCED=S△ABC+S△ABD+S△AED=ab+c1+ab,
又∵S四边形BCED=(a+b)1,
∴ab+c1+ab=(a+b)1,
∴a1+b1=c1.
利用图1进行证明:
证明:如图,连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a,∵S四边形ADCB=S△ACD+S△ABC=b1+ab.
又∵S四边形ADCB=S△ADB+S△DCB=c1+a(b﹣a),
∴b1+ab=c1+a(b﹣a),
∴a1+b1=c1.
本题考查勾股定理的证明,解题的关键是利用构图法来证明勾股定理.
25、 (1)证明见解析;(2) 四边形ADEC的周长为6+3.
【解析】
(1)连接CD交AE于F,根据平行四边形的性质得到CF=DP,OF=PF,根据题意得到AF=EF,又CF=DP,根据平行四边形的判定定理证明即可;
(2)根据题意计算出OC、OP的长,根据勾股定理求出AC、CE,根据平行四边形的周长公式计算即可.
【详解】
(1)证明:如答图,连接CD交AE于F.
∵四边形PCOD是平行四边形,
∴CF=DF,OF=PF.
∵PE=AO,
∴AF=EF.
又∵CF=DF,
∴四边形ADEC为平行四边形.
(2)解:当点P运动的时间为秒时,
OP=,OC=3,
则OE=.
由勾股定理,得AC==3,
CE==.
∵四边形ADEC为平行四边形,
∴四边形ADEC的周长为(3+)×2=6+3.
本题考查的知识点是平行四边形的性质和判定、勾股定理的应用,解题关键是掌握对角线互相平分的四边形是平行四边形.
26、(1);
(2)小贾的行驶时间为分钟或分钟;
(3)
【解析】
(1)结合图形,运用待定系数法即可得出结论;
(2)设小贾的行驶时间为x分钟,根据题意列方程解答即可;
(3)分别求出当OD过点B、C时,小贾的速度,结合图形,利用数形结合即可得出结论.
【详解】
(1)设线段BC所表达的函数关系式为y=kx+b,
根据题意得,
解得,
∴线段BC所表达的函数关系式为y=200x-1500;
(2)设小贾的行驶时间为x分钟,
根据题意得150x-120x=100或1500-120x=100或120x-1500=100或120x-150(x-5)=100或150(x-5)-120x=100或3000-120x=100,
解得x=或x=或x=或x=或x=或x=,
即当小贾与爸爸相距100米时,小贾的行驶时间为分钟或分钟或分钟或分钟或分钟或分钟;
(3)如图:
当线段OD过点B时,小军的速度为1500÷15=100(米/分钟);
当线段OD过点C时,小贾的速度为3000÷22.5=(米/分钟).
结合图形可知,当100<v<时,小贾在途中与爸爸恰好相遇两次(不包括家、图书馆两地).
本题考查了一次函数的应用;熟练掌握一次函数的图象和性质是解决问题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年黑龙江省大庆市肇州实验中学九上数学开学监测试题【含答案】: 这是一份2024-2025学年黑龙江省大庆市肇州实验中学九上数学开学监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年黑龙江省大庆市林甸县九上数学开学考试试题【含答案】: 这是一份2024-2025学年黑龙江省大庆市林甸县九上数学开学考试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年黑龙江省大庆市九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年黑龙江省大庆市九年级数学第一学期开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。