年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年湖北省大冶市数学九上开学学业水平测试试题【含答案】

    2024年湖北省大冶市数学九上开学学业水平测试试题【含答案】第1页
    2024年湖北省大冶市数学九上开学学业水平测试试题【含答案】第2页
    2024年湖北省大冶市数学九上开学学业水平测试试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年湖北省大冶市数学九上开学学业水平测试试题【含答案】

    展开

    这是一份2024年湖北省大冶市数学九上开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若把分式的x、y同时扩大3倍,则分式值( )
    A.不变B.扩大为原来的3倍C.缩小为原来的D.扩大为原来的9倍
    2、(4分)如图, OABC的顶点O,A,C的坐标分别是(0,0),(2,0),(,1),则点B的坐标是( )
    A.(1,2)B.(,2)C.(,1)D.(3,1)
    3、(4分)下列平面图形中,不是轴对称图形的是( )
    A.B.C.D.
    4、(4分)下列由左边到右边的变形,属于因式分解的是( ).
    A.(x+1)(x-1)=x2-1
    B.x2-2x+1=x(x-2)+1
    C.a2-b2=(a+b)(a-b)
    D.mx+my+nx+ny=m(x+y)+n(x+y)
    5、(4分)计算的结果为( )
    A.±3B.-3C.3D.9
    6、(4分)如图1,动点P从点B出发,以2厘米/秒的速度沿路径B—C—D—E—F—A运动,设运动时间为t(秒),当点P不与点A、B重合时,△ABP的面积S(平方厘米)关于时间t(秒)的函数图象2所示,若AB=6厘米,则下列结论正确的是 ( )
    A.图1中BC的长是4厘米
    B.图2中的a是12
    C.图1中的图形面积是60平方厘米
    D.图2中的b是19
    7、(4分)质量检查员随机抽取甲、乙、丙、丁四台机器生产的20个乒乓球的直径(规格是直径4cm),整理后的平均数和方差如下表,那么这四台机器生产的乒乓球既标准又稳定的是( )
    A.甲B.乙C.丙D.丁
    8、(4分)如图,一个运算程序,若需要经过两次运算才能输出结果,则的取值范围为
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A′B′O′,当点A′与点C重合时,点A与点B′之间的距离为_____.
    10、(4分)如图,在中,,,分别是,的中点,在的延长线上,,,,则四边形的周长是____________.
    11、(4分)若分解因式可分解为,则=______。
    12、(4分)小聪让你写一个含有字母的二次根式.具体要求是:不论取何实数,该二次根式都有意义,且二次根式的值为正.你所写的符合要求的一个二次根式是______.
    13、(4分)在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知点A、B、C、D的坐标分别为(-2,2),(一2,1),(3,1),(3,2),线段AD、AB、BC组成的图形记作G,点P沿D-A-B-C移动,设点P移动的距离为a,直线l:y=-x+b过点P,且在点P移动过程中,直线l随点P移动而移动,若直线l过点C,求
    (1)直线l的解析式;
    (2)求a的值.
    15、(8分)如图,在四边形ABCD中,,,,,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转得到PQ,过A点,D点分别作BC的垂线,垂足分别为M,N.
    求AM的值;
    连接AC,若P是AB的中点,求PE的长;
    若点Q落在AB或AD边所在直线上,请直接写出BP的长.
    16、(8分)(1)解分式方程:
    (2)解方程:3x2﹣8x+5=0
    17、(10分)已知:如图,平面直角坐标系中,,,点C是x轴上一点,点D为OC的中点.
    (1)求证:BD∥AC;
    (2)若点C在x轴正半轴上,且BD与AC的距离等于2,求点C的坐标;
    (3)如果于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.
    18、(10分)(1)解方程:=;
    (2)因式分解:2x2-1.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为_____.
    20、(4分)把一元二次方程2x2﹣x﹣1=0用配方法配成a(x﹣h)2+k=0的形式(a,h,k均为常数),则h和k的值分别为_____
    21、(4分)如图,如果甲图中的阴影面积为S1,乙图中的阴影面积为S2,那么=________.(用含a、b的代数式表示)
    22、(4分)在中,若∠A=38°,则∠C=____________
    23、(4分)今年我市有5万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个调查中样本容量是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)为引导学生广泛阅读古今文学名著,某校开展了读书活动.学生会随机调查了部分学生平均每周阅读时间的情况,整理并绘制了如下的统计图表:
    学生平均每周阅读时间频数分布表
    请根据以上信息,解答下列问题;
    (1)在频数分布表中,a=______,b=______;
    (2)补全频数分布直方图;
    (3)如果该校有1600名学生,请你估计该校平均每周阅读时间不少于6小时的学生大约有多少人?
    25、(10分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.
    (1)求证:四边形AEFD是矩形;
    (2)若AC=4,∠ABC=60°,求矩形AEFD的面积.
    26、(12分)如图,在△ABC中,AB=AC,BC=10,D为AB上一点,CD=8,BD=1.
    (1)求证:∠CDB=90°;(2)求AC的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    将,扩大3倍,即将,用,代替,就可以解出此题.
    【详解】
    解:,
    分式值扩大3倍.
    故选:B.
    此题考查的是对分式的性质的理解和运用,扩大或缩小倍,就将原来的数乘以或除以后代入计算是解题关键.
    2、C
    【解析】
    根据平行四边形的性质可证△CDO≌△BEA,得出CD=BE,OD=AE,再由已知条件计算得出BE,OE的长度即可.
    【详解】
    解:过点C作CD⊥OA于点D,过点B作BE⊥OA于点E,
    ∴∠CDO=∠BEA=90°,
    ∵四边形OABC是平行四边形,
    ∴OC=AB,OC∥AB,
    ∴∠COD=∠BAE
    ∴在△CDO与△BEA中,
    CO=AB,∠COD=∠BAE,∠CDO=∠BEA=90°,
    ∴△CDO≌△BEA(AAS),
    ∴CD=BE,OD=AE,
    又∵O,A,C的坐标分别是(0,0),(2,0),(,1)
    ∴OD=,CD=1,OA=2,
    ∴BE=CD=1,AE=OD=,
    ∴OE=2+=,
    ∴点B坐标为:(,1),
    故答案为:C
    本题考查了平行四边形的性质及全等三角形的判定,解题的关键是熟悉平行四边形的性质.
    3、A
    【解析】
    试题分析:根据轴对称图形的定义作答.
    如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
    解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.
    故选A.
    考点:轴对称图形.
    4、C
    【解析】
    因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.
    【详解】
    解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,
    故选择C.
    本题考查了因式分解的定义,牢记定义是解题关键.
    5、C
    【解析】
    根据=|a|进行计算即可.
    【详解】
    =|-3|=3,
    故选:C.
    此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.
    6、C
    【解析】
    试题分析:根据图示可得BC=4×2=8厘米;图2中a=6×8÷2=24;图1中的面积为60平方厘米;图2中的b是17.
    考点:函数图象的性质.
    7、A
    【解析】
    先比较出平均数,再根据方差的意义即可得出答案.
    【详解】
    解:由根据方差越小越稳定可知,甲的质量误差小,
    故选:A.
    此题考查方差的意义.解题关键在于掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    8、C
    【解析】
    输入x,需要经过两次运算才能输出结果,说明第一次运算的结果为:5x+2<37,经过第二次运算5(5x+2)+2≥37,两个不等式联立成为不等式组,解之即可.
    【详解】
    解:根据题意得:

    解得:1≤x<7,
    即x的取值范围为:1≤x<7,
    故选C.
    本题考查一元一次不等式组的应用,正确找出等量关系,列出一元一次不等式组是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,
    ∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,
    ∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,
    ∴AO'=AC+O'C=6,
    ∴AB'=;
    故答案为1.
    此题考查菱形的性质,平移的性质,勾股定理,解题关键在于得到AO=OC=AC=2,OB=OD=BD=8.
    10、1
    【解析】
    根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE和AE的长,进而由已知可判定四边形AEDF是平行四边形,从而求得其周长.
    【详解】
    解:在Rt△ABC中,
    ∵AC=6,AB=8,
    ∴BC=10,
    ∵E是BC的中点,
    ∴AE=BE=5,
    ∴∠BAE=∠B,
    ∵∠FDA=∠B,
    ∴∠FDA=∠BAE,
    ∴DF∥AE,
    ∵D、E分别是AB、BC的中点,
    ∴DE∥AC,DE=AC=3,
    ∴四边形AEDF是平行四边形
    ∴四边形AEDF的周长=2×(3+5)=1.
    故答案为:1.
    本题考查三角形中位线定理的运用,熟悉直角三角形的性质、等腰三角形的判定以及平行四边形的判定.熟练运用三角形的中位线定理和直角三角形的勾股定理是解题的关键.
    11、-7
    【解析】
    将(x+3)(x+n)的形式转化为多项式,通过对比得出m、n的值,即可计算得出m+n的结果.
    【详解】
    (x+3)(x+n)=+(3+n)x+3n,
    对比+mx-15,
    得出:3n=﹣15,m=3+n,
    则:n=﹣5,m=﹣2.
    所以m+n=﹣2﹣5=﹣7.
    本题考查了因式分解,解题关键在于通过对比两个多项式,得出m、n的值.
    12、
    【解析】
    根据二次根式的定义即可求解.
    【详解】
    依题意写出一个二次根式为.
    此题主要考查二次根式的定义,解题的关键是熟知二次根式的特点.
    13、2.1
    【解析】
    根据已知得当AP⊥BC时,AP最短,同样AM也最短,从而不难根据相似比求得其值.
    【详解】
    连结AP,
    在△ABC中,AB=6,AC=8,BC=10,
    ∴∠BAC=90°,
    ∵PE⊥AB,PF⊥AC,
    ∴四边形AFPE是矩形,
    ∴EF=AP.
    ∵M是EF的中点,
    ∴AM=AP,
    根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,
    ∴当AP⊥BC时,△ABP∽△CAB,
    ∴AP:AC=AB:BC,
    ∴AP:8=6:10,
    ∴AP最短时,AP=1.8,
    ∴当AM最短时,AM=AP÷2=2.1.
    故答案为2.1
    解决本题的关键是理解直线外一点到直线上任一点的距离,垂线段最短,利用相似求解.
    三、解答题(本大题共5个小题,共48分)
    14、(3)y=-x+2;(2)当l过点C时,a的值为3或3.
    【解析】
    (3)将点D坐标代入y=-x+b,解出b,再代回即可得函数的解析式;
    (2)l过点C,点P的位置有两种:①点P位于点E时;②点P位于点C时;
    【详解】
    (3)当y=-x+b过点C(3,3)时,
    3=-3+b,
    ∴b=2.
    直线l的解析式为y=-x+2.
    (2)∵点A,B,C,D的坐标分别为(-2,2),(-2,3),(3,3),(3,2).
    ∴AD=BC=5,AB=3,
    ∵直线l的解析式为y=-x+2.
    ∴由得l与AD的交点E为(2,2)
    ∴DE=3.
    ∴①当l过点C时,点P位于点E时,a=DE=3;
    ②当l过点C时,点P位于点C时,a=AD+AB+BC=5+3+5=3.
    ∴当l过点C时,a的值为3或3.
    本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,本题中等难度.
    15、(1)12;(2)10;(3)PB的值为或.
    【解析】
    作等腰梯形的双高,把问题转化为矩形,全等三角形即可解决问题;
    如图2中,连接利用勾股定理求出AC,再利用三角形的中位线定理求出PE;
    分两种情形分别讨论求解即可解决问题.
    【详解】
    如图1中,作用M,于N.



    四边形AMND是矩形,


    ≌,

    ,,


    如图2中,连接AC.
    在中,,
    ,,

    如图3中,当点Q落在直线AB上时,
    ∽,



    如图4中,当点Q在DA的延长线上时,作交DA的延长线于H,延长HP交BC于G.
    设,则.


    ,,

    ≌,



    综上所述,满足条件的PB的值为或.
    本题考查四边形综合题、等腰梯形的性质、全等三角形的判定和性质、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.
    16、(1)x=1(2)x1=,x2=1
    【解析】
    (1)先把分式方程化为整式方程得到x﹣2+x﹣3=﹣3,然后解整式方程后进行检验确定原方程的解;
    (2)利用因式分解法解方程.
    【详解】
    解:(1)去分母得x﹣2+x﹣3=﹣3,
    解得x=1,
    经检验,原方程的解为x=1;
    (2)(3x﹣5)(x﹣1)=0,
    3x﹣5=0或x﹣1=0,
    所以x1= ,x2=1.
    本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了解分式方程.
    17、(1)BD∥AC;(2);(3)
    【解析】
    (1)由A与B的坐标求出OA与OB的长,进而得到B为OA的中点,而D为OC的中点,利用中位线定理即可得证;
    (2)如图1,作BF⊥AC于点F,取AB的中点G,确定出G坐标,由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理表示出OA,根据OA的长求出x的值,即可确定出C坐标;
    (3)如图2,当四边形ABDE为平行四边形时,AB∥DE,进而得到DE垂直于OC,再由D为OC中点,得到OE=CE,再由OE垂直于AC,得到三角形AOC为等腰直角三角形,求出OC的长,确定出C坐标,设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,即可确定出AC解析式.
    【详解】
    (1),,
    ,,点B为线段OA的中点,
    点D为OC的中点,即BD为的中位线,

    (2)如图1,作于点F,取AB的中点G,则,
    ,BD与AC的距离等于2,

    在中,,,点G为AB的中点,

    是等边三角形,.

    设,则,
    根据勾股定理得:,


    点C在x轴的正半轴上,
    点C的坐标为;
    (3)如图2,当四边形ABDE为平行四边形时,,

    点D为OC的中点,




    点C在x轴的正半轴上,
    点C的坐标为,
    设直线AC的解析式为.
    将,得

    解得:.
    直线AC的解析式为.
    此题属于一次函数综合题,涉及的知识有:三角形中位线定理,坐标与图形性质,待定系数法求一次函数解析式,平行四边形的性质,等边三角形的性质,勾股定理,含30度直角三角形的性质,熟练掌握定理及性质是解本题的关键.
    18、(1)x=-10;(2)2(x+2)(x-2)
    【解析】
    (1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;
    (2)原式先提取公因式,再利用平方差公式分解即可.
    【详解】
    解:(1)去分母得:2x-4=3x+6,解得:x=-10,
    经检验x=-10是分式方程的解,
    ∴原方程的解为:x=-10;
    (2)原式=.
    此题考查了解分式方程以及提公因式法与公式法的综合运用,熟练掌握分式方程的解法和分解因式的方法是解本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(3,2)
    【解析】
    对称点的纵坐标与点P的纵坐标相等,为2,
    对称点与直线x=1的距离和P与直线x=1的距离相等,所以对称点的横坐标为3,
    所以对称点的坐标为(3,2).
    点睛:掌握轴对称图形的性质.
    20、
    【解析】
    先将方程变形,利用完全平方公式进行配方.
    【详解】
    解:2x2﹣x﹣1=1,
    x2﹣x﹣=1,
    x2﹣x+﹣﹣=1,
    (x﹣)2﹣=1.
    ∴h=,k=﹣.
    故答案是:,﹣.
    考查了配方法的一般步骤:
    (1)把常数项移到等号的右边;
    (2)把二次项的系数化为1;
    (3)等式两边同时加上一次项系数一半的平方.
    选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
    21、
    【解析】
    左边阴影部分用大正方形面积减小正方形的面积,右边阴影部分的面积等于长乘以宽,据此列出式子,再因式分解、约分可得
    【详解】
    解:,
    故答案为:.
    本题主要考查因式分解的应用及分式的化简,根据图示列出面积比的算式是解题的关键.
    22、38°
    【解析】
    根据平行四边形对角相等即可求解.
    【详解】
    解:∵平行四边形ABCD中,∠A=38°,
    ∴∠C=∠A=38°,
    故答案为:38°.
    本题考查了平行四边形的性质,要知道平行四边形对角相等.
    23、1
    【解析】
    根据样本容量的定义:样本中个体的数目称为样本容量,即可求解.
    【详解】
    解:这个调查的样本是1名考生的数学成绩,故样本容量是1.
    故答案为1.
    本题考查样本容量,难度不大,熟练掌握样本容量的定义是顺利解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)80,0.1;(2)见详解;(3)1000人
    【解析】
    (1)求出总人数,总人数乘以0.2即可得到a,110除以总人数即可得到b.
    (2)根据(1)中计算和表中信息画图.
    (3)根据用样本估计总体的方法求解.
    【详解】
    解:(1)10÷0.025=400人;
    a=400×0.2=80人,b==0.1;
    故答案为80,0.1.
    (2)如图:
    (3)1600×(0.1+0.25+0.1)=1000人.
    本题考查了频数分布直方图、频数分布表,两图结合是解题的关键.
    25、(1)见解析;(2).
    【解析】
    (1)根据已知条件推知四边形AEFD是平行四边形,AE⊥BC,则平行四边形AEFD是矩形;
    (2)先证明△ABE≌△DCF,得出△ABC是等边三角形,在利用面积公式列式计算即可得解.
    【详解】
    (1)证明: ∵ 菱形ABCD
    ∴AD∥BC , AD=BC
    ∵CF=BE
    ∴BC=EF
    ∴AD∥EF,AD=EF
    ∴四边形AEFD是平行四边形
    ∵AE⊥BC
    ∴∠AEF=90°
    ∴平行四边形AEFD是矩形
    (2)根据题意可知∠ABE=∠DCF,AB=CD,CF=BE
    ∴△ABE≌△DCF (SAS)
    ∴矩形AEFD的面积=菱形ABCD的面积
    ∵∠ABC=60°,∴△ABC是等边三角形
    AC=4,AO=2,AB=4,由菱形的对角线互相垂直可得BO=
    矩形AEFD的面积=菱形ABCD的面积=
    此题考查全等三角形的判定与性质,矩形的判定,菱形的性质,解题关键在于先求出AEFD是平行四边形.
    26、(1)见解析;(2)AC=.
    【解析】
    (1)根据勾股定理的逆定理即可得到答案;
    (2)设AC=x,由题意得到x2=(x﹣1)2+82,计算即可得到答案.
    【详解】
    解:(1)∵BC=10,CD=8,BD=1,
    ∴BD2+CD2=BC2,
    ∴△BDC是直角三角形,
    ∴∠CDB=90°;
    (2)∵AB=AC,
    ∴设AC=x,则AD=x﹣1,
    ∴x2=(x﹣1)2+82,
    解得:x=,
    故AB=AC=.
    本题考查勾股定理及其逆定理,解题的关键是掌握勾股定理.
    题号





    总分
    得分
    批阅人
    机器




    平均数(单位:cm)
    4.01
    3.98
    3.99
    4.02
    方差
    0.03
    2.4
    1.1
    0.3
    平均每周阅读时间x(时)
    频数
    频率
    0≤x<2
    10
    0.025
    2≤x<4
    60
    0.150
    4≤x<6
    a
    0.200
    6≤x<8
    110
    b
    8≤x<10
    100
    0.250
    10≤x≤12
    40
    0.100
    合计
    400
    1.000

    相关试卷

    2024年湖北省黄石大冶市数学九上开学复习检测模拟试题【含答案】:

    这是一份2024年湖北省黄石大冶市数学九上开学复习检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省广水市数学九上开学学业水平测试试题【含答案】:

    这是一份2024年湖北省广水市数学九上开学学业水平测试试题【含答案】,共25页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    2024-2025学年湖北省武汉市七一中学九上数学开学学业水平测试试题【含答案】:

    这是一份2024-2025学年湖北省武汉市七一中学九上数学开学学业水平测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map