终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024年湖北省恩施州数学九上开学学业质量监测试题【含答案】

    立即下载
    加入资料篮
    2024年湖北省恩施州数学九上开学学业质量监测试题【含答案】第1页
    2024年湖北省恩施州数学九上开学学业质量监测试题【含答案】第2页
    2024年湖北省恩施州数学九上开学学业质量监测试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年湖北省恩施州数学九上开学学业质量监测试题【含答案】

    展开

    这是一份2024年湖北省恩施州数学九上开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)汽车油箱中有油,平均耗油量为,如果不再加油,那么邮箱中的油量(单位:)与行驶路程(单位:)的函数图象为( )
    A.B.C.D.
    2、(4分)如图,平面直角坐标系中,在边长为1的正方形的边上有—动点沿正方形运动一周,则的纵坐标与点走过的路程之间的函数关系用图象表示大致是( )
    A. B. C. D.
    3、(4分)下列条件中,不能判定一个四边形是平行四边形的是( )
    A.两组对边分别平行B.两组对边分别相等
    C.两组对角分别相等D.一组对边平行且另一组对边相等
    4、(4分)如图,点为菱形边上的一个动点,并沿→→→的路径移动,设点E经过的路径长为,的面积为,则下列图象能大致反映与的函数关系的是( )
    A.B.
    C.D.
    5、(4分)教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、1.应该选( )参加.
    A.甲B.乙C.甲、乙都可以D.无法确定
    6、(4分)如图,在矩形中,,,为上的一点,设,则的面积与之间的函数关系式是
    A.B.C.D.
    7、(4分)如图,海平面上,有一个灯塔分别位于海岛A的南偏西30°和海岛B的南偏西60°的方向上,则该灯塔的位置可能是( )
    A.O1B.O2C.O3D.O4
    8、(4分)在 RtABC 中, ∠C  90 , AB  3 , AC  2, 则 BC 的值( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在平面直角坐标系中有一点,则点P到原点O的距离是________.
    10、(4分)一次函数的图像在轴上的截距是__________.
    11、(4分)已知一次函数y=2(x﹣2)+b的图象在y轴上的截距为5,那么b=_____.
    12、(4分)一组数据3,4,x,6,7的平均数为5,则这组数据的方差______.
    13、(4分)如果一组数据1,3,5,,8的方差是0.7,则另一组数据11,13,15,,18的方差是________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)八年级(1)班开展了为期一周的“孝敬父母,帮做家务”社会活动,并根据学生帮家长做家务的时间来评价学生在活动中的表现,把结果划分成A,B,C,D,E五个等级.老师通过家长调查了全班50名学生在这次活动中帮父母做家务的时间,制作成如下的频数分布表和扇形统计图.
    (1)求a,b的值;
    (2)根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间;
    (3)该班的小明同学这一周帮父母做家务2小时,他认为自己帮父母做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由.
    15、(8分)某幼儿园打算在六一儿童节给小朋友买礼物,计划用元购买一定数量的棒棒糖,商店推出优惠,购买达到一定数量之后,购买总金额打八折,此时,王老师发现,花元可以买到计划数量的倍还多个,棒棒糖的原单价是多少?
    16、(8分)如图,AD是△ABC的中线,AD=12,AB=13,BC=10,求AC长.
    17、(10分)如图,正比例函数的图象与一次函数的图象交于点,一次函数图象经过点,与轴的交点为,与轴的交点为.
    (1)求一次函数解析式;
    (2)求点的坐标.
    18、(10分)某车行经销的型自行车去年月份销售总额为万元,今年由于改造升级每辆车售价比去年增加元,今年月份与去年同期相比,销售数量相同,销售总额增加.
    (1)求今年型车每辆售价多少元?
    (2)该车行计划月份用不超过万元的资金新进一批型车和型车共辆,应如何进货才能使这批车售完后获利最多?
    今年、两种型号车的进价和售价如下表:
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是 .
    20、(4分)对甲、乙、丙三名射击手进行20次测试,平均成绩都是环,方差分别是,,,在这三名射击手中成绩最稳定的是______.
    21、(4分)如图,在平行四边形中,于点,若,则的度数为________.
    22、(4分)若一次函数y=kx﹣1的图象经过点(﹣2,1),则k的值为_____.
    23、(4分)不等式的正整数解是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,AM∥BC,D,E分别为AC,BC的中点,射线ED交AM于点F,连接AE,CF。
    (1)求证:四边形ABEF是平行四边形;
    (2)当AB=AC时,求证:四边形AECF时矩形;
    (3)当∠BAC=90°时,判断四边形AECF的形状,(只写结论,不必证明)。
    25、(10分)如图,在△ABC中,∠ACB=90°,∠CAB=30°, AC=4.5cm. M是边AC上的一个动点,连接MB,过点M作MB的垂线交AB于点N. 设AM=x cm,AN=y cm.(当点M与点A或点C重合时,y的值为0)
    探究函数y随自变量x的变化而变化的规律.
    (1) 通过取点、画图、测量,得到了x与y的几组对应值,如下表:
    (要求:补全表格,相关数值保留一位小数)
    (2)建立平面直角坐标系xOy,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
    (3)结合画出的函数图象,解决问题:当AN=AM时,AM的长度约为 cm(结果保留一位小数).
    26、(12分)如图,矩形中,对角线的垂直平分线与相交于点,与相交于点,连接,.求证:四边形是菱形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据“油箱中的油量=总油量﹣x公里消耗的油量”列出函数解析式,结合实际问题的情况即可求解.
    【详解】
    ∵油箱中的油量=总油量﹣x公里消耗的油量,
    ∴邮箱中的油量(单位:)与行驶路程(单位:)的函数关系式为:y=50﹣0.1x,为一次函数,且x的取值范围为0≤x≤500,
    ∴符合条件的选项只有选项B.
    故选B.
    本题考查了根据实际问题建立数学模型及应用一次函数的知识解决实际问题,正确建立一次函数模型是解决问题的关键.
    2、D
    【解析】
    根据正方形的边长即可求出AB=BC=CD=DA=1,然后结合图象可知点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,再根据点P运动的位置逐一分析,用排除法即可得出结论.
    【详解】
    解:∵正方形ABCD的边长为1,
    ∴AB=BC=CD=DA=1
    由图象可知:点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,
    ∴当点P从A到B运动时,即0<S≤1时,点P的纵坐标逐渐减小,故可排除选项A;当点P到点B时,即当S=1时,点P的纵坐标y=1,故可排除选项B;当点P从B到C运动时,即1<S≤2时,点P的纵坐标y恒等于1,故可排除C;当点P从C到D运动时,即2<S≤3时,点P的纵坐标逐渐增大;当点P从D到A运动时,即3<S≤4时,点P的纵坐标y恒等于2,
    故选D.
    此题考查的是根据图形上的点的运动,找出对应的图象,掌握横坐标、纵坐标的实际意义和根据点的不同位置逐一分析是解决此题的关键.
    3、D
    【解析】
    根据平行四边形的判定方法一一判断即可
    【详解】
    解:A、两组对边分别平行,可判定该四边形是平行四边形,故A不符合题意;
    B、两组对角分别相等,可判定该四边形是平行四边形,故B不符合题意;
    C、对角线互相平分,可判定该四边形是平行四边形,故C不符合题意;
    B、一组对边平行另一组对边相等,不能判定该四边形是平行四边形,也可能是等腰梯形,故D符合题意.
    故选D.
    此题主要考查学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.
    4、D
    【解析】
    分段来考虑:点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小,据此选择即可.
    【详解】
    点E沿A→B运动,△ADE的面积逐渐变大,设菱形的边长为a,∠A=β,
    ∴AE边上的高为ABsinβ=a•sinβ,
    ∴y=x•a•sinβ,
    点E沿B→C移动,△ADE的面积不变;
    点E沿C→D的路径移动,△ADE的面积逐渐减小.
    y=(3a-x)•sinβ,
    故选D.
    本题主要考查了动点问题的函数图象.注意分段考虑.
    5、A
    【解析】
    试题分析:由题意可得,甲的平均数为:(9+8+7+7+9)÷5=8;
    方差为:=0.8
    乙的平均数为:(10+8+9+7+1)÷5=8;
    方差为:=2;
    ∵0.8<2,∴选择甲射击运动员,故选A.
    考点:方差.
    6、D
    【解析】
    先根据矩形的性质得出∠B=90°.由BC=2,BP=x,得出PC=BC-BP=2-x,再根据△APC的面积,即可求出△APC的面积S与x之间的函数关系式.
    【详解】
    解:四边形是矩形,

    ,为上的一点,,


    的面积,
    即.
    故选:.
    本题考查了根据实际问题列一次函数关系式,矩形的性质,三角形的面积,难度一般.
    7、A
    【解析】
    根据方向角的定义解答可得,也可作出以A为基准的南偏西30°、以点B为基准的南偏西60°方向的交点即为灯塔所在位置.
    【详解】
    解:由题意知,若灯塔位于海岛A的南偏西30°、南偏西60°的方向上,
    如图所示,灯塔的位置可以是点O1.
    故选A
    本题考查方向角,解题的关键是掌握方向角的定义.
    8、A
    【解析】
    根据勾股定理即可求出.
    【详解】
    由勾股定理得,.
    故选.
    本题考查的是勾股定理,掌握勾股定理是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、13
    【解析】
    根据点的坐标利用勾股定理,即可求出点P到原点的距离
    【详解】
    解:在平面直角坐标系中,点P到原点O的距离为:,
    故答案为:13.
    本题主要考查学生对勾股定理和点的坐标的理解和掌握,此题难度不大,属于基础题.
    10、1
    【解析】
    求得一次函数与y轴的交点的纵坐标即为一次函数y=x+1的图象在y轴上的截距.
    【详解】
    解:令x=0,得y=1;
    故答案为:1.
    本题考查了一次函数的性质,掌握一次函数的性质是解题的关键.
    11、1.
    【解析】
    将原函数解析式变形为一般式,结合一次函数图象在y轴上的截距,即可得出关于b的一元一次方程,解之即可得出结论.
    【详解】
    ∵y=2(x﹣2)+b=2x+b﹣4,且一次函数y=2(x﹣2)+b的图象在y轴上的截距为5,
    ∴b﹣4=5,
    解得:b=1.
    故答案为:1.
    本题考查了一次函数图象上点的坐标特征,牢记截距的定义是解题的关键.
    12、1
    【解析】
    先由平均数的公式求出x的值,再根据方差的公式计算即可.
    【详解】
    解:数据3,4,x,6,7的平均数为5,

    解得:,
    这组数据为3,4,5,6,7,
    这组数据的方差为:.
    故答案为:1.
    本题考查方差的定义:一般地设n个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    13、0.1
    【解析】
    根据题目中的数据和方差的定义,可以求得所求数据的方差.
    【详解】
    设一组数据1,3,5,a,8的平均数是,另一组数据11,13,15,+10,18的平均数是+10,
    ∵=0.1,

    =
    =0.1,
    故答案为0.1.
    本题考查方差,解答本题的关键是明确题意,利用方差的知识解答.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)a=20,b=15;(2)该班学生这一周帮助父母做家务时间的平均数约为1.68小时;(3)符合实际,理由见解析.
    【解析】
    (1)读图可知:C等级的频率为40%,总人数为50人,可求出a,则b也可得到;
    (2)借助求出的a b的值,可估计出该班学生在这次社会活动中帮父母做家务的平均时间;
    (3)求得中位数后,根据中位数的意义分析.
    【详解】
    (1)a=50×40%=20,b=50-2-10-20-3=15;
    (2)由“中值法”可知,=1.68(小时),
    答:该班学生这一周帮助父母做家务时间的平均数约为1.68小时;
    (3)符合实际.
    设中位数为m,根据题意,m的取值范围是1.5≤m<2,因为小明帮父母做家务的时间大于中位数.所以他帮父母做家务的时间比班级中一半以上的同学多.
    本题考查读频数分布直方图、扇形图的能力和利用统计图获取信息的能力,加权平均数的计算以及中位数的应用.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    15、棒棒糖的原单价为3元.
    【解析】
    【分析】设棒棒糖的原单价是x元,由等量关系“优惠后,花480元可以买到计划数量的2倍还多20个”,列出方程,解方程进行检验后即可得答案.
    【详解】设棒棒糖的原单价为x元,
    根据题意,得: ×2+20= ,
    解得:x=3 ,
    经检验:x=3是原方程的根,
    答:棒棒糖的原单价为3元.
    【点睛】本题考查了分式方程的应用,弄清题意,找出等量关系列出方程是解题的关键.
    16、2.
    【解析】
    根据勾股定理逆定理,证△ABD是直角三角形,得AD⊥BC,可证AD垂直平分BC,所以AB=AC.
    【详解】
    解:∵AD是△ABC的中线,且BC=10,
    ∴BD=BC=1.
    ∵12+122=22,即BD2+AD2=AB2,
    ∴△ABD是直角三角形,则AD⊥BC,
    又∵CD=BD,
    ∴AC=AB=2.
    本题考核知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.
    17、(1);(2)点的坐标为
    【解析】
    (1)将代入中即可求解;
    (2)联立两函数即可求解.
    【详解】
    解:(1)将代入中,得:


    (2)联立,得
    ∴点的坐标为
    此题主要考查一次函数的图像,解题的关键是熟知待定系数法确定函数关系式.
    18、(1)今年A型车每辆售价为1000元;(2)当购进A型车1辆、购进B型车20辆时,才能使这批车售完后获利最多.
    【解析】
    (1)设今年A型车每辆售价为x元,则去年A型车每辆售价为(x−200)元,根据数量=总价÷单价,结合今年6月份与去年同期相比销售数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设购进A型车m辆,则购进B型车(50−m)辆,根据总价=单价×数量结合总费用不超过4.3万元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据销售利润=单辆利润×购进数量即可得出销售利润关于m的函数关系式,利用一次函数的性质解决最值问题即可.
    【详解】
    解:(1)设今年A型车每辆售价为x元,则去年A型车每辆售价为(x−200)元,
    根据题意得:,
    解得:x=1000,
    经检验,x=1000是原分式方程的解,
    答:今年A型车每辆售价为1000元;
    (2)设购进A型车m辆,则购进B型车(50−m)辆,
    根据题意得:800m+950(50−m)≤4100,
    解得:m≥1.
    销售利润为:(1000−800)m+(1200−950)(50−m)=−50m+12500,
    ∵−50<0,
    ∴当m=1时,销售利润最多,50-1=20(辆),
    答:当购进A型车1辆、购进B型车20辆时,才能使这批车售完后获利最多.
    本题考查了分式方程的应用、一次函数的的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,找出销售利润关于m的函数关系式.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据众数的概念,确定x的值,再求该组数据的方差.
    【详解】
    ∵一组数据5,8,10,x,9的众数是8,∴x=8,
    ∴这组数据为5,8,10,8,9,该组数据的平均数为:.
    ∴这组数据的方差
    本题考查众数与方差,熟练掌握众数的概念,以及方差公式是解题的关键.
    20、乙
    【解析】
    根据方差的意义,结合三人的方差进行判断即可得答案.
    【详解】
    解:∵甲、乙、丙三名射击手进行20次测试,平均成绩都是9.3环,方差分别是3.5,0.2,1.8,
    3.5>1.8>0.2,
    ∴在这三名射击手中成绩最稳定的是乙,
    故答案为乙.
    本题考查了方差的意义,利用方差越小成绩越稳定得出是解题关键.
    21、26°
    【解析】
    根据可得△DBC为等腰三角形,则有∠DBC=∠C=64°,再根据平行四边形的对边互相平行,可得∠ADB=∠DBC=64°,最后再根据内角和定理来求得∠DAE的度数.
    【详解】
    解:∵,∠C=64°,
    ∴∠DBC=∠C=64°,
    又∵四边形是平行四边形,
    ∴AD∥BC,
    ∴∠ADB=∠DBC=64°,
    又∵,
    ∴∠DAE=90°−64°=26°.
    故答案为:26°.
    本题主要考查了平行四边形和等腰三角形的性质,熟练掌握是解题的关键.
    22、-1
    【解析】
    一次函数y=kx-1的图象经过点(-2,1),将其代入即可得到k的值.
    【详解】
    解:一次函数y=kx﹣1的图象经过点(﹣2,1),
    即当x=﹣2时,y=1,可得:1=-2k﹣1,
    解得:k=﹣1.
    则k的值为﹣1.
    本题考查一次函数图像上点的坐标特征,要注意利用一次函数的特点以及已知条件列出方程,求出未知数.
    23、1和2.
    【解析】
    先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.
    【详解】
    去分母得,2(x+4) >3(3x−1)-6,
    去括号得,2x+8>9x-3-6,
    移项得,2x−9x>-3-6−8,
    合并同类项得,−7x>−17,
    把x的系数化为1得,x< .
    故它的正整数解为:1和2.
    此题考查解一元一次不等式,一元一次不等式的整数解,解题关键在于掌握运算法则
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)见解析;(3)四边形AECF是菱形
    【解析】
    (1)利用三角形的中位线定理得出AB∥EF,再由AM∥BC可得出结论;(2)易证ΔADF≌ΔCDE,得出DE=DF,推出四边形AECF是平行四边形,再根据对角线相等的平行四边形是矩形可得结果;(3)利用四边相等的四边形是菱形解答即可.
    【详解】
    (1)证明:∵D,E分别为AC,BC的中点, ∴AB∥EF,∵AB∥EF,AM∥BC
    ∴四边形ABEF是平行四边形
    (2)证明:∵AM∥BC
    ∴∠FAC=∠ACE,∠AFE=∠CEF
    ∵AD=DC
    ∴ΔADF≌ΔCDE
    ∴DE=DF
    ∴四边形AECF是平行四边形
    又∵四边形ABEF是平行四边形
    ∴AB=EF
    ∵AB=AC
    ∴AC=EF
    ∴平行四边形AECF是矩形
    (3)当∠BAC=90°时,四边形AECF是菱形。
    理由: ∵∠BAC=90°,BE=CE, ∴AE=BE=EC, ∵四边形ABEF是平行四边形, 四边形AECF是平行四边形, ∴AF=BE,AE=FC, ∴AE=EC=FC=AF, ∴四边形AECF是菱形.
    本题考查了平行四边形的性质与判定,矩形的判定与菱形的判定,解题的关键是熟练掌握性质与判定.
    25、(1)1.1; (2)详见解析;(3)3.1.
    【解析】
    (1)如图,作辅助线:过N作NP⊥AC于P,证明△NPM∽△MCB,列比例式可得结论;
    (2)描点画图即可;
    (3)同理证明△NPM∽△MCB,列比例式,解方程可得结论.
    【详解】
    解:(1)如图,过N作NP⊥AC于P,
    Rt△ACB中,∠CAB=30°, AC=1.5cm.
    ∴BC=
    当x=2时,即AM=2,
    ∴MC=2.5,
    ∵∠NMB=90°,
    易得△NPM∽△MCB,
    ∴ = ,
    设NP=5a,PM=9a,则AP=15a,AN=10a,
    ∵AM=2,
    ∴15a+9a=2,
    a= ,
    ∴y=AN=10×1.73×≈1.1;
    故答案为1.1;
    (2)如图所示:
    (3)设PN=a,则AN=2a,AP=a,
    ∵AN=AM,∴AM=1a,
    如图,由(1)知:△NPM∽△MCB,
    ∴,即 ,
    解得:a≈0.81,
    ∴AM=1a=1×0.81=3.36≈3.1(cm).
    故答案为(1)1.1; (2)详见解析;(3)3.1.
    本题是三角形与函数图象的综合题,主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,函数图象的画法,直角三角形的性质,勾股定理,并与方程相结合,计算量比较大.
    26、见解析
    【解析】
    先证明四边形AMCN为平行四边形,再根据对角线互相垂直的平行四边形是菱形即可证得结论.
    【详解】
    是矩形,则,

    而是的垂直平分线,
    则,,
    而,

    ,四边形为平行四边形,
    又,
    四边形是菱形.
    本题考查了矩形的性质,平行四边形的判定,菱形的判定等,正确把握相关的性质定理与判定定理是解题的关键.
    题号





    总分
    得分
    型车
    型车
    进价(元/辆)
    售价(元/辆)
    今年售价
    x/cm
    0
    0.5
    1
    1.5
    2
    2.5
    3
    3.5
    4
    4.5
    y/cm
    0
    0.4
    0.8
    1.2
    1.6
    1.7
    1.6
    1.2
    0
    x/cm
    0
    0.5
    1
    1.5
    2
    2.5
    3
    3.5
    1
    1.5
    y/cm
    0
    0.1
    0.8
    1.2
    1.1
    1.6
    1.7
    1.6
    1.2
    0

    相关试卷

    2024年湖北省恩施州鹤峰县九上数学开学教学质量检测试题【含答案】:

    这是一份2024年湖北省恩施州鹤峰县九上数学开学教学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年甘肃省陇南市九上数学开学学业质量监测模拟试题【含答案】:

    这是一份2024年甘肃省陇南市九上数学开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年甘肃省会师中学九上数学开学学业质量监测模拟试题【含答案】:

    这是一份2024年甘肃省会师中学九上数学开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map