终身会员
搜索
    上传资料 赚现金

    2024年湖北省黄石市名校九年级数学第一学期开学统考模拟试题【含答案】

    立即下载
    加入资料篮
    2024年湖北省黄石市名校九年级数学第一学期开学统考模拟试题【含答案】第1页
    2024年湖北省黄石市名校九年级数学第一学期开学统考模拟试题【含答案】第2页
    2024年湖北省黄石市名校九年级数学第一学期开学统考模拟试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年湖北省黄石市名校九年级数学第一学期开学统考模拟试题【含答案】

    展开

    这是一份2024年湖北省黄石市名校九年级数学第一学期开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列分式中,是最简分式的是( )
    A.B.C.D.
    2、(4分)如图,在平行四边形ABCD中,下列结论一定正确的是( ).
    A.AB=ADB.OA=OCC.AC=BDD.∠BAD=∠ABC
    3、(4分)若平行四边形中两个相邻内角度数比为1:2,则其中较大的内角是( )
    A.90°B.60°C.120°D.45°
    4、(4分)若一个多边形的内角和为外角和的3倍,则这个多边形为 ( )
    A.八边形B.九边形C.十边形D.十二边形
    5、(4分)如图,直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )
    A.一处B.二处C.三处D.四处
    6、(4分)估计的值在( )
    A.2到3之间B.3到4之间C.4到5之间D.5到6之间
    7、(4分)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为
    A.15°或30°B.30°或45°C.45°或60°D.30°或60°
    8、(4分)已知一元二次方程2x2﹣5x+1=0的两根为x1,x2,下列结论正确的是( )
    A.两根之和等于﹣,两根之积等于1
    B.x1,x2都是有理数
    C.x1,x2为一正一负根
    D.x1,x2都是正数
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若分式方程无解,则__________.
    10、(4分)如图,平行四边形中,,,∠,点是的中点,点在的边上,若为等腰三角形,则的长为__________.
    11、(4分)如图,直线经过点,则关于的不等式的解集是______.
    12、(4分)若有意义,则的取值范围为_________.
    13、(4分)分式与的最简公分母是__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某学校为了创建书香校园,去年购买了一批图书.其中科普书的单价比文学书的单价多8元,用1800元购买的科普书的数量与用l000元购买的文学书的数量相同.
    (1)求去年购买的文学书和科普书的单价各是多少元;
    (2)这所学校今年计划再购买这两种文学书和科普书共200本,且购买文学书和科普书的总费用不超过2088元.今年文学书的单价比去年提高了20%,科普书的单价与去年相同,且每购买1本科普书就免费赠送1本文学书,求这所学校今年至少要购买多少本科普书?
    15、(8分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
    (1)求购买A型和B型公交车每辆各需多少万元?
    (2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?
    (3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?
    16、(8分)已知:正方形ABCD和等腰直角三角形AEF,AE=AF(AE<AD),连接DE、BF,P是DE的中点,连接AP。将△AEF绕点A逆时针旋转。
    (1)如图①,当△AEF的顶点E、F恰好分别落在边AB、AD时,则线段AP与线段BF的位置关系为 ,数量关系为 。
    (2)当△AEF绕点A逆时针旋转到如图②所示位置时,证明:第(1)问中的结论仍然成立。
    (3)若AB=3,AE=1,则线段AP的取值范围为 。
    17、(10分)计算:
    (1);
    (2)先化简,再求值,;其中,x2,y2.
    18、(10分)平行四边形ABCD在平面直角坐标系中的位置如图所示,已知AB=8,AD=6,∠BAD=60°,点A的坐标为(-2,0).
    求:(1)点C的坐标;
    (2)直线AC与y轴的交点E的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若二次根式有意义,则x的取值范围是_____.
    20、(4分)如图,是的斜边上的中线,,在上找一点,使得,连结并延长至,使得,连结,,则长为________.
    21、(4分)当______时,分式方程会产生增根.
    22、(4分)化简得_____________.
    23、(4分)如图,在数轴上点A表示的实数是___.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某学校计划组织全校1500名师生外出参加集体活动.经过研究,决定租用当地租车公司一共60辆、两种型号客车作为交通工具.
    下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:
    注:载客量指的是每辆客车最多可载该校师生的人数.
    学校租用型号客车辆,租车总费用为元.
    (1)求与的函数解析式,请直接写出的取值范围;
    (2)若要使租车总费用不超过22000元,一共有几种租车方案?并结合函数性质说明哪种租车方案最省钱?
    25、(10分)如图,在矩形ABCD中,AB=8,BC=6,点P、点E分别是边AB、BC上的动点,连结DP、PE.将 △ADP 与 △BPE分别沿DP与PE折叠,点A与点B分别落在点A′,B′处.
    (1) 当点P运动到边AB的中点处时,点A′与点B′重合于点F处,过点C作CK⊥EF于K,求CK的长;
    (2) 当点P运动到某一时刻,若P,A',B'三点恰好在同一直线上,且A'B'=4 ,试求此时AP的长.
    26、(12分)为了解某校八年级150名女生的身高情况,从中随机抽取10名女生,测得身高并绘制如下条形统计图.
    (1)求出这10名女生的身高的中位数和众数;
    (2)依据样本估计该校八年级全体女生的平均身高;
    (3)请你根据这个样本,在该校八年级中,设计一个挑选50名女生组成方队的方案(要求选中女生的身高尽可能接近).
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据最简分式的定义对四个分式分别进行判断即可.
    【详解】
    A、=,不是最简分式;
    B、=,不是最简分式;
    C、,是最简分式;
    D、=,不是最简分式;
    故选C.
    本题考查了最简分式:一个分式的分子与分母没有公因式时,叫最简分式.
    2、B
    【解析】
    根据平行四边形的性质分析即可.
    【详解】
    由平行四边形的性质可知:①边:平行四边形的对边相等 ②角:平行四边形的对角相等③对角线:平行四边形的对角线互相平分.
    所以四个选项中A、C、D不正确,
    故选B.
    此题主要考查了平行四边形的性质,正确把握平行四边形的性质是解题关键.
    3、C
    【解析】
    据平行四边形的性质得出AB∥CD,推出∠B+∠C=180°,根据∠B:∠C=1:2,求出∠C即可.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠B+∠C=180°,
    ∵∠B:∠C=1:2,
    ∴∠C=×180°=120°,
    故选:C.
    本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.
    4、C
    【解析】
    设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:
    180(n-2)=360×4,解方程可得.
    【详解】
    解:设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:
    180(n-2)=360×4
    n-2=8
    解得:n=10
    所以,这是个十边形
    故选C.
    本题考核知识点,多边形的内角和外角.解题关键点,熟记多边形内角和计算公式.
    5、D
    【解析】
    由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.
    【详解】
    解:∵△ABC内角平分线的交点到三角形三边的距离相等,
    ∴△ABC内角平分线的交点满足条件;
    如图:点P是△ABC两条外角平分线的交点,
    过点P作PE⊥AB,PD⊥BC,PF⊥AC,
    ∴PE=PF,PF=PD,
    ∴PE=PF=PD,
    ∴点P到△ABC的三边的距离相等,
    ∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;
    综上,到三条公路的距离相等的点有4处,
    ∴可供选择的地址有4处.
    故选:D
    考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.
    6、B
    【解析】
    利用”夹逼法“得出的范围,继而也可得出+1的范围.
    【详解】
    ∵4 < 6 < 9 ,
    ∴,即,
    ∴,
    故选B.
    7、D
    【解析】
    试题分析:∵四边形ABCD是菱形, ∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,
    ∵∠BAD=120°, ∴∠ABC=180°﹣∠BAD=180°﹣120°=60°, ∴∠ABD=30°,∠BAC=60°.
    ∴剪口与折痕所成的角a的度数应为30°或60°.
    考点:剪纸问题
    8、D
    【解析】
    根据根与系数的关系,可得答案.
    【详解】
    解:A、x1+x2=,x1•x2=,故A错误;
    B、x1==,x2==,故B错误;
    C、x1==>0,x2==>0,故C错误;
    D、x1==>0,x2==>0,故D正确;
    故选:D.
    本题考查查了根与系数的关系,利用根与系数的关系是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    先把m看作已知,解分式方程得出x与m的关系,再根据分式方程无解可确定方程的增根,进一步即可求出m的值.
    【详解】
    解:在方程的两边同时乘以x-1,得 ,
    解得.
    因为原方程无解,所以原分式方程有增根x=1,即,解得m=1.
    故答案为1.
    本题考查了分式方程的解法和分式方程的增根,正确理解分式方程无解与其增根的关系是解题的关键.
    10、或或1
    【解析】
    根据点P所在的线段分类讨论,再分析每种情况下腰的情况,然后利用直角三角形的性质和勾股定理分别求值即可.
    【详解】
    解:①当点P在AB上时,由∠ABC=120°,此时只能是以∠PBE为顶角的等腰三角形,BP=BE,过点B作BF⊥PE于点F,如下图所示
    ∴∠FBE=∠ABC=10°,EP=2EF
    ∴∠BEF=90°-∠FBE=30°
    ∵,点是的中点
    ∴BE=
    在Rt△BEF中,BF=
    根据勾股定理:EF=
    ∴EP=2EF=;
    ②当点P在AD上时,过点B作BF⊥AB于F,过点P作PG⊥BC,如下图所示
    ∵∠ABC=120°
    ∴∠A=10°
    ∴∠ABF=90°-∠A=30°
    在Rt△ABF中AF=,BF=
    ∴BP≥BF>BE,EP≥BF>BE
    ∴此时只能是以∠BPE为顶角的等腰三角形,BP=PE,
    ∴PG=BF=,EG=
    根据勾股定理:EP=;
    ③当点P在CD上时,过点E作EF⊥CD于F,过点B作BG⊥CD
    由②可知:BE的中垂线与CD无交点,
    ∴此时BP≠PE
    ∵∠A=10°,四边形ABCD为平行四边形
    ∴∠C=10°
    在Rt△BCG中,∠CBG=90°-∠C=30°,CG=
    根据勾股定理:BG=
    ∴BP≥BG>BE
    ∵EF⊥CD,BG⊥CD,点E为BC的中点
    ∴EF为△BCG的中位线
    ∴EF=
    ∴此时只能是以∠BEP为顶角的等腰三角形,BE=PE=1.
    综上所述:的长为或或1.
    故答案为:或或1
    此题考查的是等腰三角形的性质、直角三角形的性质和勾股定理,掌握三线合一、30°所对的直角边是斜边的一半、利用勾股定理解直角三角形和分类讨论的数学思想是解决此题的关键.
    11、
    【解析】
    写出函数图象在x轴下方所对应的自变量的范围即可.
    【详解】
    解:观察图像可知:当x>2时,y<1.
    所以关于x的不等式kx+3<1的解集是x>2.
    故答案为:x>2.
    本题考查了一次函数与一元一次不等式的关系.y=kx+b与kx+b>1、kx+b<1的关系是:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.整体是就是体现数形结合的思想.
    12、
    【解析】
    根式有意义,被开方式要大于等于零.
    【详解】
    解:∵有意义,
    ∴2x0,
    解得:
    故填.
    本题考查了根式有意义的条件,属于简单题,熟悉二次根式有意义的条件是解题关键.
    13、
    【解析】
    分式的最简公分母通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,即可得解.
    【详解】
    由题意,得
    其最简公分母是,
    故答案为:.
    此题主要考查分式的最简公分母,熟练掌握,即可解题.
    三、解答题(本大题共5个小题,共48分)
    14、(1)文学书的单价是1元,科普书的单价是2元;(2) 至少要购买52本科普书.
    【解析】
    (1)设去年购买的文学书的单价是x元,科普书的单价是(x+8)元,根据“用200元购买的科普书的数量与用l000元购买的文学书的数量相同”列出方程;
    (2)设这所学校今年要购买y本科普书,根据“购买文学书和科普书的总费用不超过2088元”列出不等式.
    【详解】
    解:(1)设去年购买的文学书的单价是x元,科普书的单价是(x+8)元,
    根据题意,得.
    解得x=1.
    经检验 x=1是原方程的解.
    当x=1时,x+8=2.
    答:去年购买的文学书的单价是1元,科普书的单价是2元;
    (2)设这所学校今年要购买y本科普书,
    根据题意,得1×(1+20%)(200﹣y﹣y)+2y≤2088
    解得y≥52
    答:这所学校今年至少要购买52本科普书.
    本题考查分式方程的应用和一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.
    15、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
    (2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;
    (3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.
    【解析】
    详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,
    解得,
    答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
    (2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得

    解得:6≤a≤8,
    因为a是整数,
    所以a=6,7,8;
    则(10-a)=4,3,2;
    三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.
    (3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;
    ②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;
    ③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;
    故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
    此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.
    16、(1)AP⊥BF,(2)见解析;(3)1≤AP≤2
    【解析】
    (1)根据直角三角形斜边中线定理可得 ,即△APD为等腰三角形推出∠DAP=∠EDA,可证△AED≌△ABF可得∠ABF=∠EDA=∠DAP 且 BF=ED由三角形内角和可得∠AOF=90°即AP⊥BF由全等可得 即
    (2)延长AP至Q点使得DQ∥AE,PA延长线交于G点,利用P是DE中点,构造△AEP≌△PDQ可得∠EAP=∠PQD,DQ=AE=FA可得∠QDA=∠FAB可证△FAB≌△QDA 得到∠AFB=∠PQD=∠EAP,AQ=FB由三角形内角和可得∠FAG=90°得出AG⊥FB即AP⊥BF由全等可得
    (3)由于 即求BF的取值范围,当BF最小时,即F在AB上,此时BF=2,AP=1
    当BF最大时,即F在BA延长线上,此时BF=4,AP=2可得1≤AP≤2
    【详解】
    (1)
    根据直角三角形斜边中线定理有AP是△AED中线可得 ,即△APD为等腰三角形。
    ∴∠DAP=∠EDA
    又AE=AF,∠BAF=∠DAE=90°,AB=AD
    ∴△AED≌△ABF
    ∴∠ABF=∠EDA=∠DAP 且 BF=ED
    设AP与BF相交于点O
    ∴∠ABF+∠AFB=90°=∠DAP+∠AFB
    ∴∠AOF=90°即AP⊥BF
    ∴ 即
    故答案为:AP⊥BF,
    (2)
    延长AP至Q点使得DQ∥AE,PA延长线交于G点
    ∴∠EAP=∠PQD,∠AEP=∠QDP
    ∵P是DE中点,
    ∴EP=DP
    ∴△AEP≌△PDQ
    则∠EAP=∠PQD,DQ=AE=FA
    ∠QDA=180°-(∠PAD+∠PQD)
    =180°-∠EAD
    而∠FAB=180°-∠EAD,则∠QDA=∠FAB
    ∵AF=DQ,∠QDA=∠FAB ,AB=AD
    ∴△FAB≌△QDA
    ∴∠AFB=∠PQD=∠EAP,AQ=FB
    而∠EAP+∠FAG=90°
    ∴∠AFB+∠FAG=90°
    ∴∠FAG=90°
    ∴AG⊥FB
    即AP⊥BF


    (3)∵
    ∴即求BF的取值范围
    BF最小时,即F在AB上,此时BF=2,AP=1
    BF最大时,即F在BA延长线上,此时BF=4,AP=2
    ∴ 1≤AP≤2
    掌握三角形全等以及直角三角形斜边上的中线,灵活运用各种角关系是解题的关键。
    17、(1);(2)2.
    【解析】
    (1)根据二次根式和零指数幂进行化简,再进行加减运算即可得到答案;
    (2)先根据平方差公式对进行化简,再代入x2,y2,计算即可得到答案.
    【详解】
    (1)
    =
    =
    =
    (2)
    =
    =
    =
    将x2,y2代入得到=2.
    本题考查平方差公式、二次根式和零指数幂,解题的关键是掌握平方差公式、二次根式和零指数幂.
    18、(1)C(3, );(1)E(0,)
    【解析】
    (1)过C作CH⊥x轴于点H,利用平行四边形的性质结合直角三角形的性质得出C点坐标;
    (1) 利用待定系数法求出一次函数解析式,再利用x =0进而得出答案.
    【详解】
    解:(1)过C作CH⊥x轴于点H,
    ∵四边形ABCD为平行四边形,
    ∴CD=AB=8,BC=AD=2,AB//DC,AD//BC.
    ∴∠BAD=∠HBC
    ∵∠BAD =20°,
    ∴∠HBC=20°.
    ∴BH=3,CH=.
    ∵A(-1,0),
    ∴AO=1.
    ∴OB=2.
    ∴OH=OB+BH=3.
    ∴C(3,).
    (1)设直线AC的表达式为:y=kx+b,把A(-1,0)和C(3,)代入,得
    ∴,
    解得:
    ∴.
    ∴E(0,)
    此题主要考查了平行四边形的性质和待定系数法求一次函数解析式,正确掌握平行四边形的性质是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、x≥
    【解析】
    根据二次根式中的被开方数是非负数,可得出x的取值范围.
    【详解】
    ∵二次根式有意义,∴2x﹣1≥0,解得:x≥.
    故答案为x≥.
    本题考查了二次根式有意义的条件,解答本题的关键是掌握:二次根式有意义,被开方数为非负数.
    20、1
    【解析】
    根据直角三角形的性质求出DE,根据三角形中位线定理计算即可.
    【详解】
    解:∵DE是Rt△ABD的斜边AB上的中线,AB=12,
    ∴DE=AB=6,
    ∴EF=DE-DF=6-2=4,
    ∵AF=CF,AE=EB,
    ∴EF是三角形ABC的中位线,
    ∴BC=2EF=1,
    故答案为:1.
    本题考查的是直角三角形的性质、三角形中位线定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
    21、1
    【解析】
    解分式方程,根据增根的含义:使最简公分母为0的根叫做分式方程的增根,即可求得.
    【详解】
    解:去分母得,解得,
    而此方程的最简公分母为,令故增根为.
    即,解得.
    故答案为1.
    本题考查解分式方程,难度不大,是中考的常考点,熟练掌握增根的含义是顺利解题的关键.
    22、
    【解析】
    利用二次根式的性质进行化简即可.
    【详解】
    解:.
    故答案为.
    点睛:本题考查了二次根式的化简.熟练应用二次根式的性质对二次根式进行化简是解题的关键.
    23、
    【解析】
    首先利用勾股定理计算出BO的长,然后再根据AO=BO可得答案.
    【详解】
    OB==,
    ∵OB=OA,
    ∴点A表示的实数是,故答案为:.
    本题考查实数与数轴、勾股定理,解题的关键是掌握勾股定理的应用.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)与的函数解析式为;(2)一共有11种租车方案,当租用型车辆30辆,型车辆30辆时,租车费用最省钱.
    【解析】
    (1)根据题意可以得到y与x的函数关系式,然后根据总人数可以求出x的取值范围,本题得以解决;
    (2)根据题意可以得到关于x的不等式,然后根据一次函数的性质即可解答本题.
    【详解】
    (1)由题意可得,


    解得,,
    即与的函数解析式为;
    (2)由题意可得,

    解得,,

    为整数,
    、31、32、33、、40,
    共有11种租车方案,

    随的增大而增大,
    当时,取得最小值,此时,,
    答:一共有11种租车方案,当租用型车辆30辆,型车辆30辆时,租车费用最省钱.
    本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
    25、(1);(2),PA的长为2或1.
    【解析】
    (1)由折叠的性质可得E ,F,D三点在同一直线上,在Rt△DEC中,根据勾股定理可求出BE,CE,DE的长,再根据面积法即可求出CK的值;
    (2)分两种情况进行讨论:根据A′B′=4列出方程求解即可.
    【详解】
    ⑴如图,
    ∵四边形ABCD为矩形,将 △ADP 与 △BPE分别沿DP与PE折叠,
    ∴∠PFD=∠PFE=90°,
    ∴∠PFD+∠PFE=180°,即:E ,F,D三点在同一直线上.
    设BE=EF=x,则EC=1-x,
    ∵DC=AB=8, DF=AD=1,
    在Rt△DEC中,∵DE=DF+FE=1+x, EC=1-x, DC=8,
    ∴(1+x)2=(1-x)2+82,
    计算得出x=,即BE=EF=,
    ∴DE=, EC=,
    ∵S△DCE=DC∙CE=DECK,
    ∴CK=;
    ⑵①如图2中,设AP=x,则PB=8-x,
    由折叠可知:PA′=PA=x , PB′=PB=8-x,
    ∵A′B′=4,
    ∴8-x-x=4,
    ∴x=2, 即AP=2.
    ②如图3中,
    ∵A′B′=4,
    ∴x-(8-x)=4, ∴x=1, 即AP=1.
    综上所述,PA的长为2或1.
    此题是四边形综合题,主要考查了矩形的性质,折叠问题,勾股定理.熟练运用勾股定理列方程求解是解本题的关键.
    26、 (1)众数162,中位数161.5;(2)161cm;(3).
    【解析】
    (1)根据统计图中的数据可以求得这组数据的中位数和众数;
    (2)根据加权平均数的求法可以解答本题;
    (3)根据题意可以设计出合理的方案,注意本题答案不唯一.
    【详解】
    解:(1)这10名女生的身高为:154、158、158、161、161、162、162、162、165、167,
    ∴这10名女生的身高的中位数是:cm,众数是162cm,
    即这10名女生的身高的中位数和众数分别是161.5cm、162cm;
    (2)平均身高.
    (3)可以先将八年级身高是162cm的所有女生挑选出来,若不够,再挑选身高与162cm最接近的,直到挑选到50人为止.
    本题考查条形统计图、用样本估计总体、加权平均数、中位数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    题号





    总分
    得分
    批阅人
    型号
    载客量
    租金单价
    30人辆
    400元辆
    20人辆
    300元辆

    相关试卷

    2024年湖北省黄石市十校联考九年级数学第一学期开学复习检测模拟试题【含答案】:

    这是一份2024年湖北省黄石市十校联考九年级数学第一学期开学复习检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省黄石市白沙片区九年级数学第一学期开学复习检测模拟试题【含答案】:

    这是一份2024年湖北省黄石市白沙片区九年级数学第一学期开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年黄石市重点中学九上数学开学统考模拟试题【含答案】:

    这是一份2024-2025学年黄石市重点中学九上数学开学统考模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map