2024年湖北省通城市隽水镇南门中学数学九年级第一学期开学学业水平测试模拟试题【含答案】
展开这是一份2024年湖北省通城市隽水镇南门中学数学九年级第一学期开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若关于的方程产生增根,则的值是( )
A.B.C.或D.
2、(4分)下列方程中,有实数解的方程是( )
A.;B.;
C.;D.
3、(4分)如图,菱形ABCD中,对角线AC等于,∠D=120°,则菱形ABCD的面积为( )
A.B.54C.36D.
4、(4分)如图,△DEF是由△ABC经过平移得到的,若∠C=80°,∠A=33°,则∠EDF=( )
A.33°B.80°C.57°D.67°
5、(4分)在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4的值为( )
A.6B.5C.4D.3
6、(4分)如图,平行四边形的对角线与相交于点,下列结论正确的是( )
A.
B.
C.
D.是轴对称图形
7、(4分)如图,在中,点是边上一点,,过点作交于,若是等腰三角形,则下列判断中正确的是( )
A.B.C.D.
8、(4分)小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可能是( )
A.正三角形B.正方形C.正五边形D.正六边形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)平面直角坐标系中,A是y=﹣(x>0)图象上一点,B是x轴正半轴上一点,点C的坐标为(0,﹣2),若点D与A,B,C构成的四边形为正方形,则点D的坐标_____.
10、(4分)秀水村的耕地面积是平方米,这个村的人均占地面积(单位:平方米)随这个村人数的变化而变化.则与的函数解析式为______.
11、(4分)如果顺次连接四边形的四边中点得到的新四边形是菱形,则与的数量关系是___.
12、(4分)若a≠b,且a2﹣a=b2﹣b,则a+b=__.
13、(4分)小明从A地出发匀速走到B地.小明经过(小时)后距离B地(千米)的函数图像如图所示.则A、B两地距离为_________千米.
三、解答题(本大题共5个小题,共48分)
14、(12分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(1)参加比赛有_____名运动员,图①中a的值是_____,补全条形统计图.
(2)统计的这组初赛成绩数据的众数是_____,中位数是_____,平均数是_____.
(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.
15、(8分)为了比较甲、乙两种水稻秧苗是否出苗整齐,每种秧苗各取5株并量出每株的长度如下表所示(单位:厘米)通过计算平均数和方差,评价哪个品种出苗更整齐.
16、(8分)如图,为长方形的对角线,将边沿折叠,使点落在上的点处.将边沿折叠,使点落在上的点处。
求证:四边形是平行四边形;
若,求四边形的面积。
17、(10分)在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S矩形ABCD=3S△PAB,则PA+PB的最小值为_____.
18、(10分)计算:
(1) ;
(2)(﹣1)(+1)+(﹣2)2
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系中,点为第一象限内一点,且.连结,并以点为旋转中心把逆时针转90°后得线段.若点、恰好都在同一反比例函数的图象上,则的值等于________.
20、(4分)如图,在▱ABCD中,AE⊥BC于点E,F为DE的中点,∠B=66°,∠EDC=44°,则∠EAF的度数为_____.
21、(4分) “m2是非负数”,用不等式表示为___________.
22、(4分)若式子在实数范围内有意义,则x的取值范围是 .
23、(4分)写出在抛物线上的一个点________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,,点是边上的中点,、分别垂直、于点和.求证:
25、(10分)在一棵树的10米高处有两只猴子,其中一只猴子爬下树走到离树20米的池塘,另一只猴子爬到树顶后直接跃向池塘的处,如果两只猴子所经过距离相等,试问这棵树有多高.
26、(12分)如图,△ABC中,D是BC上的一点.若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据方程有增根得到x=3,将x=3代入化简后的整式方程中即可求出答案.
【详解】
将方程去分母得x-1=m,
∵方程产生增根,
∴x=3,
将x=3代入x-1=m,得m=2,
故选:B.
此题考查分式方程的解的情况,分式方程的增根是使分母为0的未知数的值,正确理解增根是解题的关键.
2、B
【解析】
首先对每一项的方程判断有无实数解,就是看方程的解是否存在能满足方程的左右两边相等的实数.一元二次方程要有实数根,则△≥0;算术平方根不能为负数;分式方程化简后求出的根要满足原方程.
【详解】
解:A项移项得:,等式不成立,所以原方程没有实数解,故本选项错误;
B项移项得,存在实数x使等式成立;所以原方程有实数解,故本选项符合题意;
C项是一元二次方程,△==-15<0,方程无实数根,故本选项错误;
D. 化简分式方程后,求得x=1,检验后,x=1为增根,故原分式方程无解.故本选项错误;
故选B.
本题考查了无理方程、高次方程、分式方程的解法,二次根式的性质,属于基础知识,需熟练掌握.
3、D
【解析】
如图,连接BD交AC于点O,根据菱形的性质和等腰三角形的性质可得AO的长、BO=DO、AC⊥BD、∠DAC =30°,然后利用30°角的直角三角形的性质和勾股定理可求出OD的长,即得BD的长,再根据菱形的面积=对角线乘积的一半计算即可.
【详解】
解:如图,连接BD交AC于点O,∵四边形ABCD是菱形,
∴AD=CD,AO=CO=,BO=DO,AC⊥BD,
∵∠ADC=120°,∴∠DAC=∠ACD=30°,∴AD=2DO,
设DO=x,则AD=2x,在直角△ADO中,根据勾股定理,得,解得:x=3,(负值已舍去)∴BD=6,
∴菱形ABCD的面积=.
故选:D.
本题考查了菱形的性质、等腰三角形的性质、勾股定理和30°角的直角三角形的性质等知识,属于常见题型,熟练掌握上述基本知识是解题的关键.
4、A
【解析】
根据平移的性质,得对应角∠EDF=∠A,即可得∠EDF的度数.
【详解】
解:在△ABC中,∠A=33°,
∴由平移中对应角相等,得∠EDF=∠A=33°.
故选:A.
此题主要考查了平移的性质,解题时,注意运用平移中的对应角相等.
5、C
【解析】
由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A.
6、A
【解析】
由▱ABCD的对角线AC、BD相交于点O,根据平行四边形的性质求解即可求得答案,注意排除法在解选择题中的应用.
【详解】
∵▱ABCD的对角线AC、BD相交于点O,
∴S□ABCD=4S△AOB,AC与BD互相平分(OA=OC,OB=OD),▱ABCD是中心对称图形,不是轴对称图形.
故A正确,B,C,D错误.
故选A.
此题考查了平行四边形的性质.此题难度不大,注意熟记平行四边形的性质定理是关键.
7、B
【解析】
根据等腰三角形的性质得到根据垂直的性质得到
根据等量代换得到又即可得到
根据同角的余角相等即可得到.
【详解】
,
,
从而
是等腰三角形,
,
故选:B.
考查等腰三角形的性质,垂直的性质,三角形的内角和定理,掌握同角的余角相等是解题的关键.
8、C
【解析】
平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360,则说明能够进行平面镶嵌;反之则不能.
【详解】
解:因为用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,
所以小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正五边形.
故选:C
用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4,﹣2)或(2,﹣4)或(2﹣2,2﹣2).
【解析】
首先依据题意画图图形,对于图1和图2依据正方形的对称性可得到点D的坐标,对于图3可证明△AEC≌△BFA,从而可得到AE=BF,然后由反比例函数的解析式可求得点A的坐标,然后可得到点D的坐标.
【详解】
如图1所示:当CD为对角线时.
∵OC=2,AB=CD=4,
∴D(4,﹣2).
如图2所示:
∵OC=2,BD=AC=4,
∴D(2,﹣4).
如图3所示:过点A作AE⊥y轴,BF⊥AE,则△AEC≌△BFA.
∴AE=BF.
设点A的横纵坐标互为相反数,
∴A(2,﹣2)
∴D(2﹣2,2﹣2).
综上所述,点D的坐标为(4,﹣2)或(2,﹣4)或(2﹣2,2﹣2).
故答案为:(4,﹣2)或(2,﹣4)或(2﹣2,2﹣2).
本题主要考查的是正方形的性质,反比例函数的性质,依据题意画出复合题意得图形是解题的关键.
10、
【解析】
人均耕地面积即耕地总面积除以人数,y随着n的变化而变化,因此,n是自变量,y是因变量。
【详解】
根据题意可列出
此题考查根据实际问题列反比例函数关系式,解题关键在于列出解析式
11、
【解析】
先证明EFGH是平行四边形,再根据菱形的性质求解即可.
【详解】
如图1所示,连接AC,
∵E、F、G、H分别是四边形ABCD边的中点,
∴HE∥AC,HE=AC,GF∥AC,GF=AC,
∴HE=GF且HE∥GF;
∴四边形EFGH是平行四边形. 连接BD,如图2所示:
若四边形EFGH成为菱形,
则EF=HE,
由(1)得:HE=AC,
同理:EF=BD,
∴AC=BD;
故答案为:AC=BD.
本题考查了平行四边形的判定、中点四边形、菱形的性质、三角形中位线定理;熟练掌握三角形中位线定理是解决问题的关键.
12、1.
【解析】
先移项,然后利用平方差公式和因式分解法进行因式分解,则易求a+b的值.
【详解】
由a2﹣a=b2﹣b,得
a2﹣b2﹣(a﹣b)=2,
(a+b)(a﹣b)﹣(a﹣b)=2,
(a﹣b)(a+b﹣1)=2.
∵a≠b,
∴a+b﹣1=2,
则a+b=1.
故答案是:1.
本题考查了因式分解的应用.注意:a≠b条件的应用,该条件告诉我们a﹣b≠2,所以必须a+b﹣1=2.
13、20
【解析】
根据图象可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,据此解答即可.
【详解】
解:根据题意可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,
所以A、B两地距离为:4×5=20(千米).
故答案为:20
本题考查了一次函数的应用,观察函数图象结合数量关系,列式计算是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)20,25,图详见解析;(2)众数:1.65m,中位数1.60m,平均数1.61m;(3)能.
【解析】
(1) 用整体1减去其他百分比,即可求出a的值,用已知人数除以所占百分比即可求解.
(2) 根据平均数,众数和中位数的定义分别进行求解.
(3) 根据中位数的意义可直接判断出能否进入复赛.
【详解】
(1),
(2)平均数;在这组数据样本中,1.65出现了6次,出现次数最多,故众数为1.65;将这组样本数据从小到大的顺序排列,其中处于中间的两个数都为1.60,所以中位数为.
(3)能.
本题主要考查数据的处理、数据的分析以及统计图表,熟悉掌握是关键.
15、甲种水稻出苗更整齐
【解析】
根据平均数、方差的计算公式求出平均数和方差,再根据平均数、方差的意义,进行比较可得出结论.
【详解】
解:(厘米),
(厘米),
(厘米),
(厘米),
∵,
∴甲种水稻出苗更整齐.
本题考查平均数、方差的计算及意义,需熟记计算公式.
16、(1)证明过程见解析;(2)四边形的面积为30.
【解析】
(1)首先证明△ABE≌△CDF,则DF=BE,然后可得到AF=EC,依据一组对边平行且相等的四边形是平行四边形可证明AECF是平行四边形;
(2)由可得BC=8,由折叠性质可设BE=EM=x,根据,可以求出x的值,进而求出四边形的面积.
【详解】
(1)证明:∵四边形ABCD为矩形
∴AB=CD,AD∥CB,∠B=∠D=90°,∠BAC=∠DCA
由翻折性质可知:∠EAB=∠BAC,∠DCF=∠DCA
∴∠EAB=∠DCF
在△ABE和△CDF中
∴△ABE≌△CDF
∴BE=DF
∴AF=CE
又AF∥CE
∴四边形AECF是平行四边形.
(2)解:∵
∴BC=8
由翻折性质可知:BE=EM
可设BE=EM=x
且
即:
解得x=3
∴CE=BC-BE=8-3=5
∴
本题主要考查全等三角形的性质与判定,平行四边形以及直角三角形,是一个比较综合性的题目.
17、4
【解析】
首先由S矩形ABCD=3S△PAB,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.
【详解】
设△ABP中AB边上的高是h.
∵S矩形ABCD=3S△PAB,
∴AB•h=AB•AD,
∴h= AD=2,
∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.
在Rt△ABE中,∵AB=4,AE=2+2=4,
∴BE=,
即PA+PB的最小值为4.
故答案为:4.
本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.
18、 (1);(2)8-
【解析】
(1)根据二次根式的混合运算法则进行计算即可.
(2)利用完全平方公式和平方差公式进行计算即可.
【详解】
(1)原式=3++2﹣
=3+2+
=;
(2)原式=2﹣1+3﹣4+4
=8﹣4.
此题考查二次根式的混合运算,解题关键在于利用平方差公式和完全平方公式进行计算.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
分析: 过A作AE⊥x轴,过B作BD⊥AE,利用同角的余角相等得到一对角相等,再由一对角相等,且AE=BD=b,OE=AD=a,进而表示出ED和OE+BD的长,即可表示出B坐标,由A与B都在反比例函数图象上,得到A与B横纵坐标乘积相等,列出关系式,变形后即可求出的值.
详解:过A作AE⊥x轴,过B作BD⊥AE,
∵∠OAB=90°,
∴∠OAE+∠BAD=90°,
∵∠AOE+∠OAE=90°,
∴∠BAD=∠AOE,
在△AOE和△BAD中,
∴△AOE≌△BAD(AAS),
∴AE=BD=b,OE=AD=a,
∴DE=AE-AD=b-a,OE+BD=a+b,
则B(a+b,b-a),
∵A与B都在反比例图象上,得到ab=(a+b)(b-a),整理得:b2-a2=ab,
即,
∵△=1+4=5,
∴,
∵点A(a,b)为第一象限内一点,
∴a>0,b>0,
则,
故答案为:.
点睛:本题主要考查反比例函数图象上点的坐标特征,解决本题的关键是构造全等三角形根据反比例函数上点的坐标特征列关系式.
20、68°
【解析】
只要证明∠EAD=90°,想办法求出∠FAD即可解决问题.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠B=∠ADC=66°,AD∥BC,
∵AE⊥BC,
∴AE⊥AD,
∴∠EAD=90°,
∵F为DE的中点,
∴FA=FD=EF,
∵∠EDC=44°,
∴∠ADF=∠FAD=22°,
∴∠EAF=90°﹣22°=68°,
故答案为:68°.
本题考查平行四边形的性质、直角三角形斜边中线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
21、≥1
【解析】
根据非负数即“≥1”可得答案.
【详解】
解:“m2是非负数”,用不等式表示为m2≥1,
故答案为:m2≥1.
本题主要主要考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.
22、.
【解析】
根据二次根式被开方数必须是非负数的条件,
要使在实数范围内有意义,必须.
故答案为
23、(0,﹣4)(答案不唯一)
【解析】
把(0,﹣4)点的横坐标代入函数式,比较纵坐标是否相符,即可解答.
【详解】
将(0,﹣4)代入,
得到 ,
故(0,﹣4)在抛物线上,
故答案为:(0,﹣4).
此题考查二次函数图象上点的坐标特征,解题关键在于把点代入解析式.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
证法一:连接AD,由三线合一可知AD平分∠BAC,根据角平分线的性质定理解答即可;证法二:根据“AAS”△BED≌△CFD即可.
【详解】
证法一:连接AD.
∵AB=AC,点D是BC边上的中点,
∴AD平分∠BAC(等腰三角形三线合一性质),
∵DE、DF分别垂直AB、AC于点E和F,
∴DE=DF(角平分线上的点到角两边的距离相等).
证法二:在△ABC中,
∵AB=AC,
∴∠B=∠C(等边对等角).
∵点D是BC边上的中点,
∴BD=DC ,
∵DE、DF分别垂直AB、AC于点E和F,
∴∠BED=∠CFD=90°.
在△BED和△CFD中
∵,
∴△BED≌△CFD(AAS),
∴DE=DF(全等三角形的对应边相等).
本题考查了等腰三角形的性质,角平分线的性质,以及全等三角形的判定与性质,熟练掌握角平分线的性质以及全等三角形的判定与性质是解答本题的关键.
25、树高为15m.
【解析】
设树高BC为xm,则可用x分别表示出AC,利用勾股定理可得到关于x的方程,可求得x的值.
【详解】
解:设树高BC为xm,则CD=x-10,
则题意可知BD+AB=10+20=30,
∴AC=30-CD=30-(x-10)=40-x,
∵△ABC为直角三角形,
∴AC2=AB2+BC2,即(40-x)2=202+x2,
解得x=15,即树高为15m,
本题主要考查勾股定理的应用,用树的高度表示出AC,利用勾股定理得到方程是解题的关键.
26、84
【解析】
根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.
【详解】
解:在△ABD中,
∵BD2+AD2=62+82=100=AB2,
∴△ABD是直角三角形,
∴△ADC也是直角三角形
∴DC2+AD2=AC2,即DC2=AC2-AD2=172-82=225,
∴DC=15 .
∴BC=BD+DC=6+15=21,
∴S△ABC==84 .
此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证△ABD是直角三角形.
题号
一
二
三
四
五
总分
得分
编号
1
2
3
4
5
甲
12
13
14
15
16
乙
13
14
16
12
10
∠AOE=∠BAD,
∠AEO=∠BDA=90°
AO=BA
相关试卷
这是一份2024年哈尔滨市风华中学数学九年级第一学期开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年安徽省合肥市庐江县汤池镇初级中学数学九年级第一学期开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖南省周南石燕湖中学数学九年级第一学期开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。