2024年湖北省武汉十三中学数学九上开学调研模拟试题【含答案】
展开
这是一份2024年湖北省武汉十三中学数学九上开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)解关于的方程(其中为常数)产生增根,则常数的值等于( )
A.-2B.2C.-1D.1
2、(4分)均匀地向一个容器注水,最后将容器注满在注水过程中,水的高度h随时间t的变化规律如图所示,这个容器的形状可能是
A.B.C.D.
3、(4分)下面哪个点在函数的图象上( )
A.B.C.D.
4、(4分)如图所示,已知P、R分别是四边形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么EF的长( )
A.逐渐增大B.逐渐变小
C.不变D.先增大,后变小
5、(4分)如果,为有理数,那么( )
A.3B.C.2D.﹣2
6、(4分)我国“一带一路”战略给沿线国家和地区带来了很大的经济效益,沿线某地区居民2017年年人均收入为3800美元,预计2019年年人均收入将达到5000美元,设2017年到2019年该地区居民年人均收入平均增长率为,可列方程为( )
A.B.
C. D.
7、(4分)如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=25°,则∠EPF的度数是( )
A.100°B.120°C.130°D.150°
8、(4分)一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图像可以表示为中的( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若关于的方程的解为正数,则的取值范围是__________.
10、(4分)已知一次函数y=mx+n(m≠0,m,n为常数),x与y的对应值如下表:
那么,不等式mx+n<0的解集是_____.
11、(4分)如图,在平面直角坐标系中,OA=AB,点A的坐标为(2,4),将△OAB绕点B旋转180°,得到△BCD,再将△BCD绕点D旋转180°,得到△DEF,如此进行下去,…,得到折线OA-AC-CE…,点P(2017,b)是此折线上一点,则b的值为_______________.
12、(4分)如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=_____°.
13、(4分)已如边长为的正方形ABCD中,C(0,5),点A在x轴上,点B在反比例函数y=(x>0,m>0)的图象上,点D在反比例函数y=(x<0,n<0)的图象上,那么m+n=______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.
15、(8分)旅客乘乘车按规定可以随身携带一定质量的行李,如果超过规定,则需购买行李票,设行李票y(元)是行李质量x(千克)的一次函数.其图象如图所示.
(1)当旅客需要购买行李票时,求出y与x之间的函数关系式;
(2)当旅客不愿意购买行李票时,最多可以携带多少行李?
16、(8分)甲、乙两家文化用品商场平时以同样价格出售相同的商品.六一期间两家商场都让利酬宾,其中甲商场所有商品一律按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.
(1)分别写出两家商场购物金额(元)与商品原价(元)的函数解析式;
(2)在如图所示的直角坐标系中画出(1)中函数的图象;
(3)六一期间如何选择这两家商场购物更省钱?
17、(10分)解方程:x2-1= 4x
18、(10分)(课题研究)旋转图形中对应线段所在直线的夹角(小于等于的角)与旋转角的关系.
(问题初探)线段绕点顺时针旋转得线段,其中点与点对应,点与点对应,旋转角的度数为,且.
(1)如图(1)当时,线段、所在直线夹角为______.
(2)如图(2)当时,线段、所在直线夹角为_____.
(3)如图(3),当时,直线与直线夹角与旋转角存在着怎样的数量关系?请说明理由;
(形成结论)旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角_____.
(运用拓广)运用所形成的结论求解下面的问题:
(4)如图(4),四边形中,,,,,,试求的长度.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一次函数经过,且与y轴交点的纵坐标为4,则它的解析式为______.
20、(4分)已知函数y=-x+m与y=mx-4的图象交点在y轴的负半轴上,那么,m的值为____.
21、(4分)计算:的结果是________.
22、(4分)已知﹣=16,+=8,则﹣=________.
23、(4分)已知点(-1,y1),(2,y2),(3,y3)在反比例函数y=的图象上,则用“200两段分别讨论);(2)根据(1)中所得函数关系式按要求画出函数图象即可;(3)根据(1)中所得函数关系式分0.8x0.7x+60三种情况进行解答即可得到相应的结论.
【详解】
解:(1)甲商场:y=0.8x,
乙商场:y=x(0≤x≤200),
y=0.7(x﹣200)+200=0.7x+60,
即y=0.7x+60(x>200);
(2)如图所示;
(3)①由0.8x600,
∴当x=600时,甲、乙商场购物花钱相等;当x600时,在乙商场购物更省钱.
本题考查了一次函数的应用,解决第(1)小题时,需注意乙商场中:y与x的函数关系式需分0≤x≤200和x>200两段分别讨论;解第(2)小题时,需分三种情况分别讨论,再作出相应的结论.
17、
【解析】
解:,
,
方程有两个不相等的实数根
本题考查一元二次方程,本题难度较低,主要考查学生对一元二次方程知识点的掌握,运用求根公式即可.
18、(1)90°;(2)60°;(3)互补,理由见解析;相等或互补;(4).
【解析】
(1)通过作辅助线如图1,延长DC交AB于F,交BO于E,可以通过旋转性质得到AB=CD,OA=OC,BO=DO,证明△AOB≌△COD,进而求得∠B=∠D得∠BFE=∠EOD=90°
(2)通过作辅助线如图2,延长DC交AB于F,交BO于E,同(1)得∠BFE=∠EOD=60°
(3)通过作辅助线如图3,直线与直线所夹的锐角与旋转角互补, 延长,交于点通过证明得,再通过平角的定义和四边形内角和定理,证得;
形成结论:通过问题(1)(2)(3)可以总结出旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角相等或互补;
(4)通过作辅助线如图:将绕点顺时针旋转,使得与重合,得到,连接,延长,交于点,可得,进一步得到△BDF是等边三角形,,再利用勾股定理求得.
【详解】
(1)解:(1)如图1,延长DC交AB于F,交BO于E,
∵α=90°
∴∠BOD=90°
∵线段AB绕点O顺时针旋转得线段CD,
∴AB=CD,OA=OC,BO=DO
∴△AOB≌△COD(SSS)
∴∠B=∠D
∵∠B=∠D,∠OED=∠BEF
∴∠BFE=∠EOD=90°
故答案为:90°
(2)如图2,延长DC交AB于F,交BO于E,
∵α=60°
∴∠BOD=60°
∵线段AB绕点O顺时针旋转得线段CD,
∴AB=CD,OA=OC,BO=DO
∴△AOB≌△COD(SSS)
∴∠B=∠D
∵∠B=∠D,∠OED=∠BEF
∴∠BFE=∠EOD=60°
故答案为:60°
(3)直线与直线所夹的锐角与旋转角互补,
延长,交于点
∵线段绕点顺时针旋转得线段,
∴,,
∴
∴
∴
∵
∴
∴
∴直线与直线所夹的锐角与旋转角互补;
形成结论:旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角相等或互补;
(4)将绕点顺时针旋转,使得与重合,得到,连接,延长,交于点,
∴旋转角为,
∴,,,
∴△BDF是等边三角形,
∵,,
∴,
∴.
本题是三角形综合题,考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,添加辅助线构造全等三角形是本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y=2x+1.
【解析】
用待定系数法,把(﹣1,2),(0,1)分别代入y=kx+b,可求得k,b.
【详解】
解:把(﹣1,2),(0,1)分别代入y=kx+b得,
,
解得,
所以,y=2x+1.
故答案为y=2x+1.
本题考核知识点:待定系数法求一次函数解析式. 解题关键点:掌握求函数解析式的一般方法.
20、-1
【解析】
根据题意,第二个函数图象与y轴的交点坐标也是第一个函数图象与y轴的交点坐标,然后求出第二个函数图象与y轴的交点坐标,代入第一个函数解析式计算即可求解.
【详解】
当x=0时,y=m•0-1=-1,
∴两函数图象与y轴的交点坐标为(0,-1),
把点(0,-1)代入第一个函数解析式得,m=-1.
故答案为:-1.
此题考查两直线相交的问题,根据第二个函数解析式求出交点坐标是解题的关键,也是本题的突破口.
21、4
【解析】
按照二次根式的乘、除运算法则运算即可求解.
【详解】
解:原式=
故答案为:4.
本题考查二次根式的乘除运算法则,熟练掌握运算公式是解决此类题的关键.
22、2
【解析】
根据平方差公式即可得出答案.
【详解】
∵,
∴
故答案为2.
本题考查的是平方差公式,熟知平方差公式是解题的关键.
23、y2<y3<y1
【解析】
试题分析:∵反比例函数y=中,﹣k2﹣1<0,
∴函数图象的两个分式分别位于二、四象限,且在每一象限内y随x的增大而增大,
∵﹣1<0,
∴点A(﹣1,y1)位于第二象限,
∴y1>0;
∵0<2<3,
∴B(1,y2)、C(2,y3)在第四象限,
∵2<3,
∴y2<y3<0,
∴y2<y3<y1.
考点:反比例函数图象上点的坐标特征.
二、解答题(本大题共3个小题,共30分)
24、.
【解析】
根据等腰直角三角形的性质求出BD,根据勾股定理求出BC,根据正切的定义求出AB.
【详解】
∵在Rt△BDC中,CD=,
∴BD=CD=,
∴BC==,
∵∠ACB=30°,
∴AC=1AB,
∵AB1+BC1=AC1,
∴AB1+6=4AB1,
∴AB=.
本题考查了等腰直角三角形的性质,含30°角的直角三角形的性质,以及勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
25、(1);(1)
【解析】
(1)先把各二次根式化为最简二次根式,然后合并即可;
(1)利用平方差和完全平方公式计算.
【详解】
解:(1)原式=3﹣+1
=;
(1)原式=()1+1+1﹣[()1﹣1]
=5+1+1﹣5+1
=1+1.
故答案为:(1);(1)1+1.
本题考查了二次根式的混合运算.
26、 (1)见解析;(2)见解析;(3)见解析.
【解析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用轴对称的性质得出对应点位置进而得出答案;
(3)直接利用旋转的性质得出对应点位置进而得出答案.
【详解】
(1)如图所示:△A1B1C1,即为所求;
(2)如图所示:△A2B2C2,即为所求;
(3)如图所示:△A3B3C3,即为所求.
此题主要考查了平移变换以及轴对称变换和旋转变换,正确得出对应点位置是解题关键.
题号
一
二
三
四
五
总分
得分
x
﹣2
﹣1
0
1
2
3
y
﹣1
0
1
2
3
4
相关试卷
这是一份2024年安徽省桐城实验中学数学九上开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年浙江省杭州市育才中学数学九上开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖北省武汉市七一(华源)中学数学九上开学教学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。