2024年湖北省武汉市江岸区七一华源中学九上数学开学联考模拟试题【含答案】
展开
这是一份2024年湖北省武汉市江岸区七一华源中学九上数学开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列式子从左到右的变形一定正确的是( )
A.B.C.D.
2、(4分)如图,在Rt△ABC中,AC=BC=2,将△ABC绕点A逆时针旋转60°,连接BD,则图中阴影部分的面积是( )
A.2﹣2B.2C.﹣1D.4
3、(4分)不等式组有3个整数解,则的取值范围是( )
A.B.C.D.
4、(4分)已知一次函数的图象如图所示,当时,y的取值范围是
A.
B.
C.
D.
5、(4分)某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是( )
A.众数是80B.中位数是75C.平均数是80D.极差是15
6、(4分)如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的面积是( )
A.24B.30C.40D.48
7、(4分)矩形具有而菱形不具有的性质是( )
A.两组对边分别平行B.对角线相等
C.对角线互相平分D.两组对角分别相等
8、(4分)点A(1,-2)关于x轴对称的点的坐标是( )
A.(1,-2)B.(-1,2)C.(-1,-2)D.(1,2)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,点到坐标原点的距离是______.
10、(4分)若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是_______.
11、(4分)在平面直角坐标系中,一次函数的图象与轴的交点坐标为__________.
12、(4分)古算题:“笨人执竿要进屋,无奈门框拦住竿,横多四尺竖多二,没法急得放声哭,有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足,借问竿长多少数,谁人算出我佩服,”若设竿长为 x 尺,则可列方程为_____(方程无需化简).
13、(4分)如图,在中,,点、、分别为、、的中点.若,则的长为_____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知方程组,当m为何值时,x>y?
15、(8分)关于的方程有两个不相等的实数根.
求实数的取值范围;
是否存在实数,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出的值;若不存在,说明理由.
16、(8分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.
(1)求证:△ADE≌△CBF;
(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.
17、(10分)某学校组织了“热爱宪法,捍卫宪法”的知识竞赛,赛后发现所有学生的成绩(总分100分)均不低于50分,为了解本次竞赛的成绩分布情况,随机抽取若干名学生的成绩作为样本进行整理,并绘制了不完整的统计图表,请你根据统计图表解答下列问题.
(1)此次抽样调查的样本容量是_________;
(2)写出表中的a=_____,b=______,c=________;
(3)补全学生成绩分布直方图;
(4)比赛按照分数由高到低共设置一、二、三等奖,若有25%的参赛学生能获得一等奖,则一等奖的分数线是多少?
18、(10分)某校初二年级以班为单位进行篮球比赛,第一轮比赛是先把全年级平分成、两个大组,同一个大组的每两个班都进行一场比赛,这样第一轮、两个大组共进行了20场比赛,问该校初二年级共有几个班?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若一组数据1,2,3,x,0,3,2的众数是3,则这组数据的中位数是_____.
20、(4分)一根竹子高10尺,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是______尺.
21、(4分)已知一个多边形的内角和为540°,则这个多边形是______边形.
22、(4分)如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=__________.
23、(4分)当x________时,分式有意义.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,一次函数y=kx+b的图象分别与x轴,y轴的正半轴分別交于点A,B,AB=2,∠OAB=45°
(1)求一次函数的解析式;
(2)如果在第二象限内有一点C(a,);试用含有a的代数式表示四边形ABCO的面积,并求出当△ABC的面积与△ABO的面积相等时a的值;
(3)在x轴上,是否存在点P,使△PAB为等腰三角形?若存在,请直接写出所有符合条件的点P坐标;若不存在,请说明理由.
25、(10分)随着生活水平的不断提高,越来越多的人选择到电影院观看电影,体验视觉盛宴,并且更多的人通过网上平台购票,既快捷又能享受更多优惠.某电影城2019年从网上购买张电影票的费用比现场购买张电影票的费用少元:从网上购买张电影票的费用和现场购买张电影票的费用共元.
(1)求该电影城2019年在网上购票和现场购票每张电影票的价格为多少元?
(2)2019年五一当天,该电影城按照2019年网上购票和现场购票的价格销售电影票,当天售出的总票数为张.五一假期过后,观影人数出现下降,于是电影城决定从5月5日开始调整票价:现场购票价格下调,网上购票价格不变,结果发现,现场购票每张电影票的价格每降低元,售出总票数就比五一当天增加张.经统计,5月5日售出的总票数中有的电影票通过网上售出,其余通过现场售出,且当天票房总收入为元,试求出5月5日当天现场购票每张电影票的价格为多少元?
26、(12分)如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD.BC上,且DE=BP=1.连接BE,EC,AP,DP,PD与CE交于点F,AP与BE交于点H.
(1)判断△BEC的形状,并说明理由;
(2)判断四边形EFPH是什么特殊四边形,并证明你的判断;
(3)求四边形EFPH的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.而如果分式的分子、分母同时加上或减去同一个非0的数或式子,分式的值改变.
【详解】
A.无法进行运算,故A项错误.
B.当c=0时无法进行运算,故B项错误.
C. 无法进行运算,故C项错误.
D. ,故D项正确.
故答案为:D
本题考查分式的性质,熟练掌握分式的性质定理是解题的关键.
2、C
【解析】
由旋转的性质可得AB=AE,∠BAE=60°,AD=AC=2,BC=DE=2,可得△ABE是等边三角形,根据“SSS”可证△ADB≌△EDB,可得S△ADB=S△EDB,由S阴影=(S△ABE-S△ADE)可求阴影部分的面积.
【详解】
解:如图,连接BE,
∵在Rt△ABC中,AC=BC=2,
∴AB2=AC2+BC2=8
∵将△ABC绕点A逆时针旋转60°,
∴AB=AE,∠BAE=60°,AD=AC=2,BC=DE=2,
∴△ABE是等边三角形,
∴AB=BE,S△ABE=AB2=2,
∵AB=BE,AD=DE,DB=DB
∴△ADB≌△EDB(SSS)
∴S△ADB=S△EDB,
∴S阴影=(S△ABE﹣S△ADE)
∴S阴影=
故选C.
本题考查了旋转的性质,等腰直角三角形的性质,全等三角形判定和性质,熟练运用旋转的性质是本题的关键.
3、B
【解析】
分析:解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.
详解:不等式组,由﹣x<﹣1,解得:x>4,
由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,
故不等式组的解为:4<x≤2﹣a,
由关于x的不等式组有3个整数解,
得:7≤2﹣a<8,解得:﹣6<a≤﹣1.
故选B.
点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.
4、D
【解析】
观察图象得到直线与x轴的交点坐标为(2,1),且图象经过第一、三象限, y随x的增大而增大,所以当x<2时,y<1.
【详解】
解:∵一次函数y=kx+b与x轴的交点坐标为(2,1),且图象经过第一、三象限,
∴y随x的增大而增大,
∴当x<2时,y<1.
故选:D.
本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠1)的图象为直线,当k>1,图象经过第一、三象限,y随x的增大而增大;当k<1,图象经过第二、四象限,y随x的增大而减小.
5、B
【解析】
(1)80出现的次数最多,所以众数是80,A正确;
(2)把数据按大小排列,中间两个数为80,80,所以中位数是80,B错误;
(3)平均数是80,C正确;
(4)极差是90-75=15,D正确.故选B
6、A
【解析】
根据菱形的面积等于对角线乘积的一半即可解决问题.
【详解】
∵四边形ABCD是菱形,AC=6,BD=8,
∴菱形ABCD的面积=⋅AC⋅BD=×6×8=24.
故选A.
此题考查菱形的性质,解题关键在于计算公式.
7、B
【解析】
根据矩形与菱形的性质对各选项解析判断后利用排除法求解:
A.矩形与菱形的两组对边都分别平行,故本选项错误;
B.矩形的对角线相等,菱形的对角线不相等,故本选项正确;
C.矩形与菱形的对角线都互相平分,故本选项错误;
D.矩形与菱形的两组对角都分别相等,故本选项错误.
故选B.
8、D
【解析】
根据关于横轴对称的点,横坐标不变,纵坐标变成相反数进行求解即可.
【详解】
点P(m,n)关于x轴对称点的坐标P′(m,-n),
所以点A(1,-2)关于x轴对称的点的坐标是(1,2),
故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、5
【解析】
根据勾股定理解答即可.
【详解】
点P到原点O距离是.
故答案为:5
此题考查勾股定理,关键是根据勾股定理得出距离.
10、-1
【解析】
先提取公因式ab,整理后再把a+b的值代入计算即可.
【详解】
解:a+b=5时,
原式=ab(a+b)=5ab=-10,
解得:ab=-1.
故答案为:-1.
本题考查了提公因式法分解因式,提取公因式后整理成已知条件的形式是解本题的关键,也是难点.
11、
【解析】
把x=0代入函数解析式即可得解.
【详解】
解:把x=0代入一次函数y=kx+1得y=1,
所以图象与y轴的交点坐标是(0,1).
故答案为:(0,1).
本题考查了一次函数的图象与坐标轴的交点.
12、(x−1)1+(x−4)1=x1
【解析】
设竿长为x尺,根据题意可得,屋门的宽为x−4,高为x−1,对角线长为x,然后根据勾股定理列出方程.
【详解】
解:设竿长为x尺,
由题意得:(x−1)1+(x−4)1=x1.
故答案为:(x−1)1+(x−4)1=x1.
本题考查了利用勾股定理解决实际问题,解答本题的关键是根据题意表示出屋门的宽,高.
13、1
【解析】
已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.
【详解】
解:∵△ABC是直角三角形,CD是斜边的中线,
∴AB=2CD
又∵EF是△ABC的中位线,
∴AB=2CD=2×1=10cm,
故答案为:1.
此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.
三、解答题(本大题共5个小题,共48分)
14、.
【解析】
解含有参数m的二元一次方程组,得到关于m的x、y的值,再根据x>y的关系解不等式求出m的取值范围即可.
【详解】
解:,
②×2﹣①得:x=m﹣3③,
将③代入②得:y=﹣m+5,
∴得,
∵x>y,
∴m﹣3>﹣m+5,
解得m>4,
∴当m>4时,x>y.
15、(1)且;(2)不存在符合条件的实数,使方程的两个实数根之和等于两实数根之积的算术平方根.
【解析】
由于方程有两个不相等的实数根,所以它的判别式,由此可以得到关于的不等式,解不等式即可求出的取值范围.
首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于的等式,解出值,然后判断值是否在中的取值范围内.
【详解】
解:依题意得,
,
又,
的取值范围是且;
解:不存在符合条件的实数,使方程的两个实数根之和等于两实数根之积的算术平方根,
理由是:设方程的两根分别为,,
由根与系数的关系有:,
又因为方程的两个实数根之和等于两实数根之积的算术平方根,
,
,
由知,,且,
不符合题意,
因此不存在符合条件的实数,使方程的两个实数根之和等于两实数根之积的算术平方根.
本题重点考查了一元二次方程的根的判别式和根与系数的关系。
16、(1)证明见解析(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明见解析;
【解析】
(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;
(2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.
【详解】
解:证明:∵四边形是平行四边形,
∴,,.
∵点、分别是、的中点,
∴,.
∴.
在和中,
,
∴.
解:当四边形是菱形时,四边形是矩形.
证明:∵四边形是平行四边形,
∴.
∵,
∴四边形是平行四边形.
∵四边形是菱形,
∴.
∵,
∴.
∴,.
∵,
∴.
∴.
即.
∴四边形是矩形.
本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS,SAS,AAS,ASA.
17、(1)200;(2)62,0.06,38;(3)见解析;(4)1
【解析】
(1)根据统计图中的数据可以求得此次抽样调查的样本容量;
(2)根据统计图中的数据可以求得a、b、c的值;
(3)根据(2)中a、c的值可以将统计图补充完整;
(4)根据表格中的数据可以求得一等奖的分数线.
【详解】
解:(1)16÷0.08=200,
故答案为:200;
(2)a=200×0.31=62,
b=12÷200=0.06,
c=200-16-62-72-12=38,
故答案为:62,0.06,38;
(3)由(2)知a=62,c=38,
补全的条形统计图如右图所示;
(4)d=38÷200=0.19,
∵b=0.06,0.06+0.19=0.25=25%,
∴一等奖的分数线是1.
根据频数分布直方图、样本容量、频数分布表,解答本题的关键是明确题意,利用数形结合的思想解答.
18、10个
【解析】
设全年级共有2n个班级,则每一大组有n个班,每个班需参加(n-1)场比赛,则共有n(n-1)× 场比赛,可以列出一个一元二次方程.
【详解】
解:设全年级个班,
由题意得:,
解得或(舍),,
答:全年级一共10个班.
本题主要考查了有实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
【详解】
解:∵1,1,3,x,0,3,1的众数是3,
∴x=3,
先对这组数据按从小到大的顺序重新排序0,1,1,1,3,3,3,位于最中间的数是1,
∴这组数的中位数是1.
故答案为:1;
本题考查了等腰直角三角形,勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.
20、
【解析】
设折断处离地面的高度是x尺,根据勾股定理即可列出方程进行求解.
【详解】
设折断处离地面的高度是x尺,根据勾股定理得x2+32=(10-x)2,
解得x=
故折断处离地面的高度是尺.
此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的应用.
21、5.
【解析】
设这个多边形是n边形,由题意得,
(n-2) ×180°=540°,解之得,n=5.
22、75
【解析】
因为△AEF是等边三角形,所以∠EAF=60°,AE=AF,
因为四边形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.
所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.
所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,
所以∠BAE=15°,所以∠AEB=90°-15°=75°.
故答案为75.
23、
【解析】
根据分母不等于0列式求解即可.
【详解】
由题意得,x−1≠0,
解得x≠1.
故答案为:≠1.
本题考查分式有意义的条件,熟练掌握分式的基本性质是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)一次函数解析式为 y= -x+1 (1)a=− (3)存在,满足条件的点P的坐标为(0,0)或(1−1,0)或(1+1,0)或(-1,0).
【解析】
(1)根据勾股定理求出A、B两点坐标,利用待定系数法即可解决问题;
(1)根据S四边形ABCD=S△AOB+S△BOC计算即可,列出方程即可求出a的值;
(3)分三种情形讨论即可解决问题;
【详解】
(1)在 Rt△ABO中,∠OAB=45°,
∴∠OBA=∠OAB-∠OAB=90°-45°=45°
∴∠OBA=∠OAB
∴OA=OB
∴OB1+OA1=AB1即:1OB1=(1)1,
∴OB=OA=1
∴点A(1,0),B(0,1).
∴
解得:
∴一次函数解析式为 y= -x+1.
(1)如图,
∵S△AOB=×1×1=1,S△BOC=×1×|a|= -a,
∴S四边形ABCD=S△AOB+S△BOC=1-a,
∵S△ABC=S四边形ABCO-S△AOC=1-a-×1×=-a,
当△ABC的面积与△ABO面积相等时,−a=1,解得a=−.
(3)在x轴上,存在点P,使△PAB为等腰三角形
①当PA=PB时,P(0,0),
②当BP=BA时,P(-1,0),
③当AB=AP时,P(1-1,0)或(1+1,0),
综上所述,满足条件的点P的坐标为(0,0)或(1−1,0)或(1+1,0)或(-1,0).
本题考查一次函数综合题、解直角三角形、待定系数法、等腰三角形的判定和性质、三角形的面积等知识,解题的关键是学会圆分割法求多边形面积,学会用分类讨论的思想思考问题,属于中考常考题型.
25、(1)网上购票价格30元,现场购票价格50元;(2)5月5日当天现场购票每张电影票的价格为40元,见解析.
【解析】
(1)首先设网上每张电影票价格为元,现场每张电影票价格为元,然后根据题意,列出关系式,即可得解;
(2)首先设现场购票每张电影票的价格下降元,然后根据题意列出关系式,即可得解.
【详解】
(1)设网上每张电影票价格为元,现场每张电影票价格为元.
解得:
答:网上购票价格30元,现场购票价格50元.
(2)设现场购票每张电影票的价格下降元
解得(舍去),
答:5月5日当天现场购票每张电影票的价格为40元.
此题主要考查二元一次方程组、一元一次方程的实际应用,关键是根据题意列出关系式,即可解题.
26、(1)△BEC为直角三角形,理由见解析;(2)四边形EFPH是矩形,理由见解析;(3)
【解析】
(1)根据矩形的性质可得∠BAE=∠CDE=90°,AB=CD=2,AD=BC=5,然后利用勾股定理即可求出BE和CE,然后根据勾股定理的逆定理即可证出△BEC为直角三角形;
(2)根据矩形的性质可得AD∥BC, AD=BC=5,然后根据平行四边形的判定定理可得四边形EBPD和四边形APCE均为平行四边形,从而证出四边形EFPH是平行四边形,然后根据矩形的定义即可得出结论;
(3)先利用三角形面积的两种求法,即可求出BH,从而求出HE,然后根据勾股定理即可求出HP,然后根据矩形的面积公式计算即可.
【详解】
解:(1)△BEC为直角三角形,理由如下
∵四边形ABCD为矩形
∴∠BAE=∠CDE=90°,AB=CD=2,AD=BC=5
∵DE=1
∴AE=AD-DE=4
在Rt△ABE中,BE=
在Rt△CDE中CE=
∴BE2+CE2=25= BC2
∴△BEC为直角三角形
(2)四边形EFPH是矩形,理由如下
∵四边形ABCD为矩形
∴AD∥BC, AD=BC=5
∵DE=BP=1,
∴AD-DE=BC-BP=4
即AE=CP=4
∴四边形EBPD和四边形APCE均为平行四边形
∴EB∥DP,AP∥EC
∴四边形EFPH是平行四边形
∵△BEC为直角三角形,∠BEC=90°
∴四边形EFPH是矩形
(3)∵四边形APCE为平行四边形,四边形EFPH是矩形
∴AP=CE=,∠EHP=90°
∴∠BHP=180°-∠EHP=90°
∵S△ABP=
∴
解得:
∴HE=BE-BH=
在Rt△BHP中,HP =
∴S矩形EFPH= HP·HE=
此题考查的是矩形的判定及性质、勾股定理和勾股定理的逆定理,掌握矩形的定义、矩形的性质、利用勾股定理解直角三角形和利用勾股定理的逆定理判定直角三角形是解决此题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024年湖北省武汉市七一(华源)中学九上数学开学调研试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖北省武汉市七一(华源)中学数学九上开学教学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖北省武汉市江岸区七一华源中学数学九年级第一学期开学复习检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。