2024年湖北省武汉市四校联考九年级数学第一学期开学统考模拟试题【含答案】
展开这是一份2024年湖北省武汉市四校联考九年级数学第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是( )
A.k≥﹣1B.k≥﹣1且k≠0C.k≤﹣1D.k≤1且k≠0
2、(4分)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是( )
A.B.C.D.
3、(4分)将一张矩形纸片按照如图 所示的方式折叠,然后沿虚线 AB 将阴影部分剪下,再将 剪下的阴影部分纸片展开,所得到的平面图形是( )
A.直角三角形B.等腰三角形C.矩形D.菱形
4、(4分)如图,在平行四边形ABCD中,下列各式不一定正确的是( )
A.B.
C.D.
5、(4分)直线y=3x-1与y=x+3的交点坐标是 ( )
A.(2,5)B.(1,4)C.(-2,1)D.(-3,0)
6、(4分)在,,,,中,分式的个数是( )
A.1B.2C.3D.4
7、(4分)晨光中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小桐三项体育成绩(百分制)依次95分、90分、86分,则小桐这学期的体育成绩是( )
A.88B.89分C.90分D.91分
8、(4分)如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为,再分别取A1C、B1C的中点A2、B2,取A2C、B2C的中点A3、B3,依次取下去…利用这一图形,能直观地计算出( )
A.1B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A= °.
10、(4分)样本容量为 80,共分为六组,前四个组的频数分别为 12,13,15,16,第五组的频率 是 0.1,那么第六组的频率是_____.
11、(4分)若x、y为实数,且满足,则x+y的值是_________.
12、(4分)如图,在反比例函数的图像上有点它们的横坐标依次为1,2,3,……,n,n+1,分别过点作x轴,y轴的垂线,图中所构成的阴影部分面积从左到右依次为,则Sn=__________。(用含n的代数式表示)
13、(4分)m,n分别是的整数部分和小数部分,则2m-n=______.
三、解答题(本大题共5个小题,共48分)
14、(12分)随着信息技术的高速发展,计算机技术已是每位学生应该掌握的基本技能.为了提高学生对计算机的兴趣,老师把甲、乙两组各有10名学生,进行电脑汉字输入速度比赛,各组参赛学生每分钟输入汉字个数统计如下表:
(1)请你填写下表中甲班同学的相关数据.
(2)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?
(3)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价).
15、(8分)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过1元后,超出1元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>1.
(1)根据题题意,填写下表(单位:元)
(2)当x取何值时,小红在甲、乙两商场的实际花费相同?
(3)当小红在同一商场累计购物超过1元时,在哪家商场的实际花费少?
16、(8分)如图,在梯形ABCD中,AD∥BC,点E在边BC上,DE∥AB,设.
(1)用向量表示下列向量:;
(2)求作: (保留作图痕迹,写出结果,不要求写作法)
17、(10分)在正方形中,点是对角线上的两点,且满足,连接.试判断四边形的形状,并说明理由.
18、(10分) “校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,中,AB的垂直平分线DE分别交AB、BC于E、D,若,则的度数为__________
20、(4分) 的计算结果是___________.
21、(4分)如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为___.
22、(4分)在△ABC中,AB=10,CA=8,BC=6,∠BAC的平分线与∠BCA的平分线交于点I,且DI∥BC交AB于点D,则DI的长为____.
23、(4分)已知函数,则自变量x的取值范围是___________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)用适当的方法解方程
(1)x2﹣4x+3=1;
(2)(x+1)2﹣3(x+1)=1.
25、(10分)把一个足球垂直地面向上踢,(秒)后该足球的高度(米)适用公式.
(1)经多少秒时足球的高度为20米?
(2)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.
26、(12分)解不等式:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
分两种情况讨论:
(1)当时,方程为一元一次方程,必有实数根;
(2)当时,方程为一元二次方程,当时,必有实数根.
【详解】
(1)当时,方程为一元一次方程,必有实数根;
(2)当时,方程为一元二次方程,当时,必有实数根:
,
解得,
综上所述,.
故选:.
本题考查了根的判别式,要注意,先进行分类讨论,当方程是一元一次方程时,总有实数根;当方程为一元二次方程时,根的情况要通过判别式来判定.
2、A
【解析】
由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.
3、D
【解析】
解答该类剪纸问题,通过自己动手操作即可得出答案;或者通过折叠的过程可以发现:该四边形的对角线互相垂直平分,继而进行判断.
【详解】
解:易得阴影部分展开后是一个四边形,
∵四边形的对角线互相平分,
∴是平行四边形,
∵对角线互相垂直,
∴该平行四边形是菱形,
故选:D.
本题主要考查了剪纸问题,学生的分析能力,培养学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
4、D
【解析】
由▱ABCD的性质及图形可知:
A、∠1和∠2是邻补角,故∠1+∠2=180°,正确;
B、因为AD∥BC,所以∠2+∠3=180°,正确;
C、因为AB∥CD,所以∠3+∠4=180°,正确;
D、根据平行四边形的对角相等,∠2=∠4,∠2+∠4=180°不一定正确;
故选D.
5、A
【解析】
根据求函数图象交点的坐标,转化为求两个一次函数构成的方程组解的问题,因此联立两函数的解析式所得方程组,即为两个函数图象的交点坐标.
【详解】
联立两函数的解析式,得
解得,
则直线y=3x-1与y=x+3的交点坐标是,
故选:A.
考查了两条直线交点坐标和二元一次方程组解的关系,二元一次方程组的求解,注意函数的图象和性质与代数关系的转化,数形结合思想的应用.
6、B
【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
【详解】
解:,的分母中含有字母是分式,其他的分母中不含有字母不是分式,
故选:B.
考查了分式的定义,一般地,如果A,B表示两个整式,并且B中含有字母,那么式子 叫做分式.
7、B
【解析】
根据加权平均数的意义计算即可.
【详解】
解:小桐这学期的体育成绩:
95×20%+90×30%+86×50%=89(分),
故选:B.
本题考查了加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则(x1w1+x2w2+…+xnwn)÷(w1+w2+…+wn)叫做这n个数的加权平均数.
8、C
【解析】
对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.
【详解】
解:∵A1、B1分别是AC、BC两边的中点,且△ABC的面积为1,
∴△A1B1C
的面积为
∴四边形A1ABB1的面积=△ABC的面积-△A1B1C的面积
;
∴四边形A2A1B1B2的面积=的面积- 的面积
…
∴第n个四边形的面积
∴
故答案为:C
本题主要考查了学生通过特例分析从而归纳总结出一般结论的能力.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、55.
【解析】
试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C
∴∠ACA’=35°,∠A =∠A’,.
∵∠A’DC=90°,
∴∠A’ =55°.
∴∠A=55°.
考点:1.旋转的性质;2.直角三角形两锐角的关系.
10、0.2.
【解析】
首先根据频率=频数÷总数,计算从第一组到第四组的频率之和,再进一步根据一组数据中,各组的频率和是1,进行计算.
【详解】
解:根据题意得:第一组到第四组的频率之和是,又因为第五组的频率是 0.1,所以第六组的频率是.
故答案为0.2.
本题考查的是频率分布直方图,这类题目主要涉及以下三个计算公式:频率=频数÷样本容量,各组的频率之和为1,各组的频数之和=样本容量.
11、1
【解析】
根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.
【详解】
根据题意得:,解得: , ∴x+y=1,
故答案是:1.
本题考查了非负数的性质:几个非负数的和为1时,这几个非负数都为1.
12、
【解析】
由题意可知,每个小矩形的宽度为1,第个小矩形的长为 ,故将 代入,可求。
【详解】
解:依题意得
故答案为:
掌握反比例函数与面积的关系是解题的关键。
13、
【解析】
先估算出的大致范围,然后可求得-1的整数部分和小数部分,从而可得到m、n的值,最后代入计算即可.
【详解】
解:∵1<2<4,
∴1<<2,
∴0<-1<1.
∴m=0,n=-1.
∴2m-n=0-(-1)=1-.
故答案为:
本题主要考查的是估算无理数的大小,求得的大致范围是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)填写表格见解析;(2)乙组成绩更好一些;(3)①从众数看,甲班众数成绩优于乙班;②从中位数看,甲班每分钟输入135字以上的人数比乙班多;③从平均数看,两班同学输入的总字数一样,成绩相当;④从方差看,甲班成绩波动小,比较稳定;⑤从最好成绩看,乙班成绩优于甲班.(至少从两个角度进行评价).
【解析】
(1)根据众数、中位数、平均数以及方差的计算公式分别进行解答即可;
(2)根据表中给出的数据,得出甲组优秀的人数有3人,乙组优秀的人数有4人,从而得出乙组成绩更好一些;
(3)从中位数看,甲组每分钟输入135字以上的人数比乙组多;从方差看,S2甲<S2乙;甲组成绩波动小,比较稳定.
【详解】
解:(1)如下表:
(2)∵每分钟输入汉字个数136及以上的甲组人数有3人,乙组有4人
∴乙组成绩更好一些
(3)①从众数看,甲班每分钟输入135字的人数最多,乙班每分钟输入134字的人数最多,甲班众数成绩优于乙班;
②从中位数看,甲班每分钟输入135字以上的人数比乙班多;
③从平均数看,两班同学输入的总字数一样,成绩相当;
④从方差看,甲的方差小于乙的方差,则甲班成绩波动小,比较稳定;
⑤从最好成绩看,乙班速度最快的选手比甲班多1人,若比较前3~4名选手的成绩,则乙班成绩优于甲班.(至少从两个角度进行评价).
此题考查了平均数、中位数、众数和方差的定义,从表中得到必要的信息是解题的关键.
15、(1)表格见解析;(2)120;(3)当小红累计购物大于120时上没封顶,选择甲商场实际花费少;当小红累计购物超过1元而不到120元时,在乙商场实际花费少.
【解析】
(1)根据已知得出:
在甲商场:1+(290-1)×0.9=271,1+(290-1)×0.9x=0.9x+10;
在乙商场:20+(290-20)×0.92=278,20+(290-20)×0.92x=0.92x+2.2.
(2)根据题中已知条件,求出0.92x+2.2,0.9x+10相等,从而得出正确结论.
(3)根据0.92x+2.2与0.9x+10相比较,从而得出正确结论.
【详解】
解:(1)填表如下:
(2)根据题意得:0.9x+10=0.92x+2.2,
解得:x=120.
答:当x=120时,小红在甲、乙两商场的实际花费相同.
(3)由0.9x+10<0.92x+2.2解得:x>120,
由0.9x+10>0.92x+2.2,解得:x<120,
∴当小红累计购物大于120时上没封顶,选择甲商场实际花费少;
当小红累计购物超过1元而不到120元时,在乙商场实际花费少.
16、(1),(2)见解析.
【解析】
(1)AD∥BC,DE∥AB,可证得四边形ABED是平行四边形,然后利用平行四边形法则与三角形法则求解即可求得答案;
(2)首先作,连接AF,则即为所求.
【详解】
(1)∵AD∥BC,DE∥AB,
∴四边形ABED是平行四边形,
∴
∴
∴
∴;
(2)首先作,连接AF,则即为所求.
此题考查平面向量,解题关键在于灵活运用向量的转化即可.
17、四边形是菱形,理由详见解析.
【解析】
根据正方形的性质,得到,由,得到,即可得到四边形为菱形.
【详解】
证明:四边形是菱形;
理由如下:连接交于点,
四边形为正方形,
,
又,
,
即,
与相互垂直平分,
四边形为菱形.
本题考查了正方形的性质,以及菱形的判定,解题的关键是熟练掌握正方形的性质和菱形的判定进行解题.
18、 (1) 60,90;(2)见解析;(3) 300人
【解析】
(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;
(2)由(1)可求得了解的人数,继而补全条形统计图;
(3)利用样本估计总体的方法,即可求得答案.
【详解】
解:(1)∵了解很少的有30人,占50%,
∴接受问卷调查的学生共有:30÷50%=60(人);
∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;
故答案为60,90;
(2)60﹣15﹣30﹣10=5;
补全条形统计图得:
(3)根据题意得:900×=300(人),
则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.
本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、80°.
【解析】
根据线段的垂直平分线的性质得到DB=DA,得到∠DAB=∠B=40°,根据三角形的外角性质计算即可.
【详解】
解:∵DE是线段AB的垂直平分线,
∴DB=DA,
∴∠DAB=∠B=40°,
∴∠ADC=∠DAB+∠B=80°.
故答案为:80°.
本题考查线段的垂直平分线的性质、三角形的外角性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
20、3.5
【解析】
原式=4-=3=3.5,
故答案为3.5.
21、 (﹣,2)
【解析】
根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.
【详解】
∵直线y=﹣x+4与x轴、y轴分别交于A、B两点,
∴点A的坐标为(3,0),点B的坐标为(0,4).
过点C作CE⊥y轴于点E,如图所示.
∵BC=OC=OA,
∴OC=3,OE=2,
∴CE==,
∴点C的坐标为(﹣,2).
故答案为:(﹣,2).
本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及勾股定理,利用等腰直角三角形的性质结合勾股定理求出CE、OE的长度是解题的关键.
22、2.5
【解析】
根据题意,△ABC是直角三角形,延长DI交AC于点E,过I作IF⊥AB,IG⊥BC,由点I是内心,则,利用等面积的方法求得,然后利用平行线分线段成比例,得,又由BD=DI,把数据代入计算,即可得到DI的长度.
【详解】
解:如图,延长DI交AC于点E,过I作IF⊥AB,IG⊥BC,
在△ABC中,AB=10,CA=8,BC=6,
∴,
∴△ABC是直角三角形,即AC⊥BC,
∵DI∥BC,
∴DE⊥AC,
∵∠BAC的平分线与∠BCA的平分线交于点I,
∴点I是三角形的内心,则,
在△ABC中,根据等面积的方法,有
,设
即,
解得:,
∵DI∥BC,
∴,∠DIB=∠CBI=∠DBI,
∴DI=BD,
∴,
解得:BD=2.5,
∴DI=2.5;
故答案为:2.5.
本题考查了三角形的角平分线性质,平行线分线段成比例,以及等面积法计算高,解题的关键是利用等面积法求得内心到各边的距离,以及掌握平行线分线段成比例的性质.
23、
【解析】
分析:根据函数的自变量取值范围的确定方法,从分式和二次根式有意义的条件列不等式求解即可.
详解:由题意可得
解得x≥-2且x≠3.
故答案为:x≥-2且x≠3.
点睛:此题主要考查了函数的自变量的取值范围,关键是明确函数的构成:二次根式的被开方数为非负数,分式的分母不等于0等条件.
二、解答题(本大题共3个小题,共30分)
24、(1)x1=1,x2=3;(2)x1=﹣1,x2=2.
【解析】
(1)直接利用十字相乘法解方程进而得出答案;
(2)直接提取公因式进而分解因式解方程即可.
【详解】
解:(1)
,
解得:,;
(2)
,
解得:,.
此题主要考查了因式分解法解方程,正确分解因式是解题关键.
25、(1)(2)小明说得对;
【解析】
(1)将代入公式,求出h=20时t的值即可得;
(2)将函数解析式配方成顶点式,由顶点式得出足球高度的最大值即可作出判断.
【详解】
(1)足球高度为20米,即,将代入公式得:
(移项整理成一般形式)
(等式两边同时除以5)
(配方)
∴
答:经过2秒时足球的高度为20米.
(2)小明说得对,理由如下:
∵h=20t-5t2=-5(t-2)2+20,
∴由-5<0知,当t=2时,h的最大值为20,不能达到21米,
故小明说得对.
本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质及将实际问题转化为二次函数问题的能力.
26、.
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
【详解】
,
,
,
.
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
题号
一
二
三
四
五
总分
得分
输入汉字(个)
132
133
134
135
136
137
甲组人数(人)
1
0
1
5
2
1
乙组人数(人)
0
1
4
1
2
2
组
众数
中位数
平均数()
方差()
甲组
乙组
134
134.5
135
1.8
累计购物实际花费
130
290
…
x
在甲商场
127
…
在乙商场
126
…
组
众数
中位数
平均数()
方差()
甲组
135
135
135
1.6
乙组
134
134.5
135
1.8
累计购物实际花费
130
290
…
x
在甲商场
127
271
…
0.9x+10
在乙商场
126
278
…
0.92x+2.2
相关试卷
这是一份2024年湖北省武汉江岸区七校联考数学九年级第一学期开学联考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖北省黄石市十校联考九年级数学第一学期开学复习检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广西钦州钦州港区六校联考九年级数学第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。