2024年湖南省平江县九年级数学第一学期开学调研模拟试题【含答案】
展开这是一份2024年湖南省平江县九年级数学第一学期开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为( )
A.﹣2B.1C.2D.0
2、(4分)(2011•潍坊)在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是( )
A、小莹的速度随时间的增大而增大B、小梅的平均速度比小莹的平均速度大
C、在起跑后180秒时,两人相遇D、在起跑后50秒时,小梅在小莹的前面
3、(4分)若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是( )
A.B.C.D.
4、(4分)下列四个图形中,不能推出∠2与∠1相等的是( )
A.B.
C.D.
5、(4分)某地2017年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2019年在2017年的基础上增加投入资金1600万元.设从2017年到2019年该地投入异地安置资金的年平均增长率为x,则下列方程正确的是( )
A.1280(1+x)=1600B.1280(1+2x)=1600
C.1280(1+x)2=2880D.1280(1+x)+1280(1+x)2=2880
6、(4分)如图,把一张长方形纸条ABCD沿EF折叠,使点C的对应点C′恰好与点A重合,若∠1=70°,则∠FEA的度数为( )
A.40°B.50°C.60°D.70°
7、(4分)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=20,CE=15,CF=7,AF=24,则BE的长为( )
A.10B.C.15D.
8、(4分)已知一个正多边形的每个外角等于,则这个正多边形是( )
A.正五边形B.正六边形C.正七边形D.正八边形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,P(2,﹣3)关于x轴的对称点是_____
10、(4分)观察下列各式:
,
,
,
……
请利用你所发现的规律,
计算+++…+,其结果为_______.
11、(4分)平行四边形ABCD的对角线AC、BD相交于点O,AB=6,BC=8,若△AOB是等腰三角形,则平行四边形ABCD的面积等于_______________________.
12、(4分)如图,OP=1,过P作PP1⊥OP且PP1=1,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得=____.
13、(4分)如图,平行四边形ABCD中,,,AE平分交BC于点E,则CE的长为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某经销商从市场得知如下信息:
他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.
(1)试写出y与x之间的函数关系式;
(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;
(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.
15、(8分)为进一步推进青少年毒品预防教育“6•27“工程,切实提高广大青少年识毒、防毒、拒毒的意识和能力,我市高度重视全国青少年禁毒知识竞赛活动.针对某校七年级学生的知识竞赛成绩绘制了如图不完整的统计图表.
知识竞赛成绩频数分布表
根据所给信息,解答下列问题.
(1)a=____,b=____.
(2)请求出C组所在扇形统计图中的圆心角的度数.
(3)补全知识竞赛成绩频数分布直方图.
(4)已知我市七年级有180000名学生,请估算全市七年级知识竞赛成绩低于80分的人数.
16、(8分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点C与直线AD交于点A(1,2),点D的坐标为(0,1)
(1)求直线AD的解析式;
(2)直线AD与x轴交于点B,请判断△ABC的形状;
(3)在直线AD上是否存在一点E,使得4S△BOD=S△ACE,若存在求出点E的坐标,若不存在说明理由.
17、(10分)A、B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离A地的距离S(km)与时间t(h)的关系,结合图像回答下列问题:
(1)表示乙离开A地的距离与时间关系的图像是________(填 );
甲的速度是__________km/h;乙的速度是________km/h.
(2)甲出发后多少时间两人恰好相距5km?
18、(10分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.
(1)求该商店3月份这种商品的售价是多少元?
(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在△ABC中,AC=BC=9,∠C=120°,D为AC边上一点,且AD=6,E是AB边上一动点,连接DE,将线段DE绕点D逆时针旋转30°得到DF,若F恰好在BC边上,则AE的长为_____.
20、(4分)如图所示,△ABC中,AB=10cm,AC=8cm,∠ABC和∠ACB的角平分线交于点O,过点O作BC的平行线MN交AB于点M,交AC于点N,则△AMN的周长为____.
21、(4分)如图,直线y=-x+m与y=nx+4n的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n>0的解集为___________.
22、(4分)如图,等腰△ABC中,AB=AC,AB的垂直平分线MN交边AC于点D,且∠DBC=15°,则∠A的度数是_______.
23、(4分)如图,身高1.6米的小明站在处测得他的影长为3米,影子顶端与路灯灯杆的距离为12米,则灯杆的高度为_______米.
二、解答题(本大题共3个小题,共30分)
24、(8分)某公司对应聘者A,B进行面试,并按三个方面给应聘者打分,每方面满分20分,打分结果如下表:
根据实际需要,公司将专业知识、工作经验和仪表形象三项成绩得分按6:1:3的比例确定两人的成绩,通过计算说明谁将被录用.
25、(10分)某商场计划购进A、B两种新型节能台灯,已知B型节能台灯每盏进价比A型的多40元,且用3000元购进的A型节能台灯与用5000元购进的B型节能台灯的数量相同.
(1)求每盏A型节能台灯的进价是多少元?
(2)商场将购进A、B两型节能台灯100盏进行销售,A型节能台灯每盏的售价为90元,B型节能台灯每盏的售价为140元,且B型节能台灯的进货数量不超过A型节能台灯数量的2倍.应怎样进货才能使商场在销售完这批台灯时利最多?此时利润是多少元?
26、(12分)如图,平行四边形ABCD,以点B为圆心,BA长为半径作圆弧,交对角线BD于点E,连结AE并延长交CD于点F,求证:DF=DE.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
分析:根据根与系数的关系可得出x1x2=1,此题得解.
详解:∵一元二次方程x2﹣2x=1的两根分别为x1和x2,
∴x1x2=1.
故选D.
点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.
2、D
【解析】A、∵线段OA表示所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴小莹的速度是没有变化的,故选项错误;
B、∵小莹比小梅先到,∴小梅的平均速度比小莹的平均速度小,故选项错误;
C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;
D、∵起跑后50秒时OB在OA的上面,∴小梅是在小莹的前面,故选项正确.故选D.
3、A
【解析】
∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定).
a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,
观察各选项,只有A选项符合.故选A.
【详解】
请在此输入详解!
4、B
【解析】
根据平行线的性质以及对顶角相等的性质进行判断.
【详解】
解:A、∵∠1和∠2互为对顶角,
∴∠1=∠2,故本选项错误;
B、∵a∥b,
∴∠1+∠2=180°(两直线平行,同旁内角互补),
不能判断∠1=∠2,故本选项正确;
C、∵a∥b,
∴∠1=∠2(两直线平行,内错角相等),故本选项错误;
D、如图,
∵a∥b,
∴∠1=∠3(两直线平行,同位角相等),
∵∠2=∠3(对顶角相等),
∴∠1=∠2,故本选项错误;
故选B.
本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.
5、C
【解析】
根据2017年及2019年该地投入异地安置资金,即可列出关于x的一元二次方程.
【详解】
解:设从2017年到2019年该地投入异地安置资金的年平均增长率为x
根据题意得:1280(1+x)2=1280+1600=2880.
故选C.
本题主要考查一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.
6、D
【解析】
根据翻折不变性即可解决问题;
【详解】
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠1=∠FEC,
由翻折不变性可知:∠FEA=∠FEC,
∵∠1=70°,
∴∠FEA=70°,
故选D.
本题考查了矩形的性质、平行线的性质、翻折变换等知识,解题的关键是灵活运用所学知识解决问题.
7、C
【解析】
分析:根据平行四边形的面积,可得设 则在Rt中,用勾股定理即可解得.
详解:∵四边形ABCD是平行四边形,
∴
∴
设 则
在Rt中,
即
解得(舍去),
故选C.
点睛:考查了平行四边形的面积,平行四边形的性质,勾股定理等,难度较大,根据面积得出是解题的关键.
8、B
【解析】
分析:根据多边形的外角和为360°即可得出答案.
详解:360°÷60°=6,即六边形,故选B.
点睛:本题主要考查的是正多边形的外角和定理,属于基础题型.多边形的内角和定理为(n-2)×180°,多边形的外角和为360°.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(2,1)
【解析】
平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.
【详解】
点P(2,﹣1)关于x轴的对称点的坐标是(2,1),
故答案为:2,1.
本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容,比较简单.
10、
【解析】
分析:直接根据已知数据变化规律进而将原式变形求出答案.
详解:由题意可得:
+++…+
=+1++1++…+1+
=9+(1﹣+﹣+﹣+…+﹣)
=9+
=9.
故答案为9.
点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.
11、1或2
【解析】
分三种情形分别讨论求解即可解决问题;
【详解】
情形1:如图当OA=OB时,∵四边形ABCD是平行四边形,
∴AC=2OA,BD=2OB,
∴AC=BD,
∴四边形ABCD是矩形,
∴四边形ABCD的面积=1.
情形2:当AB=AO=OC=6时,作AH⊥BC于H.设HC=x.
∵AH2=AB2-BH2=AC2-CH2,
∴62-(x-8)2=122-x2,
∴x=,
∴AH=,
∴四边形ABCD的面积=8×=2.
情形3:当AB=OB时,四边形ABCD的面积与情形2相同.
综上所述,四边形ABCD的面积为1或2.
故答案为1或2.
本题考查平行四边形的性质、等腰三角形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.
12、
【解析】
根据勾股定理和已知条件,找出线段长度的变化规律,从而求出的长度,然后根据三角形的面积公式求面积即可.
【详解】
解:∵OP=1,过P作PP1⊥OP且PP1=1,得OP1=
再过P1作P1P2⊥OP1且P1P2=1,得OP2=
又过P2作P2P3⊥OP2且P2P3=1,得OP3=
∴PnPn+1=1,OPn=
∴P2014P2015=1,OP2014=
∴=P2014P2015·OP2014=
故答案为:.
此题考查的是利用勾股定理探索规律题,找到线段长度的变化规律并归纳公式是解决此题的关键.
13、4
【解析】
由平行四边形的性质得出AB=CD=6,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD=6,AD∥BC,
∴∠DAE=∠BEA,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BEA=∠BAE,
∴BE=AB=6,
∴CE=BC−BE=10−6=4;
故答案为:4
本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.
【解析】
(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;
(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;
(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.
【详解】
解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.
由700x+100(100﹣x)≤40000得x≤50.
∴y与x之间的函数关系式为y=140x+6000(x≤50)
(2)令y≥12600,即140x+6000≥12600,
解得x≥47.1.
又∵x≤50,∴经销商有以下三种进货方案:
(3)∵140>0,∴y随x的增大而增大.
∴x=50时y取得最大值.
又∵140×50+6000=13000,
∴选择方案③进货时,经销商可获利最大,最大利润是13000元.
本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.
15、 (1)300,50;(2)54°;(3)见解析;(4)9000人.
【解析】
(1)用D的人数除以D所占的百分比求出参加的总人数,然后根据B的比例求出a的值,继而求出b的值即可;
(2)用C组的比例乘以360度即可得;
(3)根据(1)的结果即可补全频数分布直方图;
(4)用E组的比例乘以180000进行估算即可.
【详解】
(1)∵被调查的总人数为200÷20%=1000(人),
∴a=1000×=300,b=1000﹣(300+300+150+200)=50,
故答案为300,50;
(2)C组所在扇形统计图中的圆心角的度数为360°×=54°;
(3)补全统计图如下:
(4)全市九年级知识竞赛成绩低于8(0分)人数约为180000×=9000人.
本题考查了频数分布直方图,扇形统计图,用样本估计总体等,读懂统计图,从中获取有用的信息是解题的关键.
16、 (1)y=x+1;(2)△ABC是等腰直角三角形;(3)存在,点E的坐标为(2,3)或(0,1)时,4S△BOD=S△ACE.
【解析】
(1)利用待定系数法,即可得到直线AD的解析式;
(2)依据点的坐标求得AB=2,AC=2,BC=4,即可得到AB2+AC2=16=BC2,进而得出△ABC是等腰直角三角形;
(3)依据4S△BOD=S△ACE,即可得到AE=,分两种情况进行讨论:①点E在直线AC的右侧,②点E在直线AC的左侧,分别依据AD=AE=,即可得到点E的坐标.
【详解】
解:(1)直线AD的解析式为y=kx+b,
∵直线AD经过点A(1,2),点D(0,1),
∴,
解得,
∴直线AD的解析式为y=x+1;
(2)∵y=x+1中,当y=0时,x=﹣1;y=﹣x+3中,当y=0时,x=3,
∴直线AD与x轴交于B(﹣1,0),直线AC与x轴交于C(3,0),
∵点A(1,2),
∴AB=2,AC=2,BC=4,
∵AB2+AC2=16=BC2,
∴∠BAC=90°,
∴△ABC是等腰直角三角形;
(3)存在,
AC=2,S△BOD=×1×1=,
∵△ABC是等腰直角三角形,
∴∠CAE=90°,
∵S△ACE=AE×AC,4S△BOD=S△ACE,
∴4×=×AE×2,
解得AE=,
①如图,当点E在直线AC的右侧时,过E作EF⊥y轴于F,
∵AD=AE=,∠EDF=45°,
∴EF=DF=2,OF=2+1=3,
∴E(2,3);
②当点E在直线AC的左侧时,
∵AD=AE=,
∴点E与点D重合,即E(0,1),
综上所述,当点E的坐标为(2,3)或(0,1)时,4S△BOD=S△ACE.
本题主要考查了两直线相交问题,待定系数法求一次函数解析式的运用,解题时注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
17、(1); 30; 20;(2)甲出发后1.3h或者1.5h时,甲乙相距5km.
【解析】
解:(1)乙离开A地的距离越来越远,图像是; 甲的速度60÷2=30;乙的速度60÷(3.5-0.5)=20;
(2)由图可求出,
由得;由得
答:甲出发后1.3h或者1.5h时,甲乙相距5km.
考点:一次函数的应用
18、(1)该商店3月份这种商品的售价是40元;(2)该商店4月份销售这种商品的利润是990元.
【解析】
(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据数量=总价÷单价结合4月份比3月份多销售30件,即可得出关于x的分式方程,解之经检验即可得出结论;
(2)设该商品的进价为y元,根据销售利润=每件的利润×销售数量,即可得出关于y的一元一次方程,解之即可得出该商品的进价,再利用4月份的利润=每件的利润×销售数量,即可求出结论.
【详解】
(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,
根据题意得:
,
解得:x=40,
经检验,x=40是原分式方程的解.
答:该商店3月份这种商品的售价是40元.
(2)设该商品的进价为y元,
根据题意得:(40﹣a)×=900,
解得:a=25,
∴(40×0.9﹣25)×=990(元).
答:该商店4月份销售这种商品的利润是990元.
本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3+
【解析】
由,可知,又有,联想一线三等角模型,延长到,使,得,进而可得,,由于,即可得是直角三角形,易求,由即可解题.
【详解】
解:如图,延长到,使,连接,
,,
,,
,
又,
,
在和中,
,
,,
,
,
设,则,由得:
,
解得,(不合题意舍去),
,
,
故答案为:.
本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质和等腰直角三角形的性质.本题解题关键是通过一线三等角模型构造全等三角形,从而得到.
20、18
【解析】
根据角平分线的定义、平行线的性质,及等角对等边可知OM=BM,ON=CN,则△AMN的周长=AB+AC可求.
【详解】
∵∠ABC和∠ACB的角平分线交于点O,
∴∠ABO=∠CBO,∠ACO=∠BCO,
∵BC∥MN,
∴∠BOM=∠CBO,∠CON=∠BCO,
∴∠BOM=∠ABO,∠CON=∠ACO,
∴OM=BM,ON=CN,
∴△AMN的周长=AM+AN+MN=AM+OM+AN+NC=AB+AC=18cm.
故答案为:18.
此题考查角平分线的定义,平行线分线段成比例,解题关键在于得出OM=BM,ON=CN.
21、
【解析】
令时,解得,则与x轴的交点为(﹣4,0),再根据图象分析即可判断.
【详解】
令时,解得,故与x轴的交点为(﹣4,0).
由函数图象可得,当时,函数的图象在x轴上方,且其函数图象在函数图象的下方,故解集是.
故答案为: .
本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.
22、1.
【解析】
根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.
【详解】
解:∵MN是AB的垂直平分线,
∴AD=BD,
∴∠A=∠ABD,
∵∠DBC=15°,
∴∠ABC=∠A+15°,
∵AB=AC,
∴∠C=∠ABC=∠A+15°,
∴∠A+∠A+15°+∠A+15°=180°,
解得∠A=1°.
故答案为1°
23、
【解析】
根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似解答.
【详解】
解:如图: ∵AB∥DE, ∴CD:BC=DE:AB,
∴1.6:AB=3:12, ∴AB=6.1米,
∴灯杆的高度为6.1米.
答:灯杆的高度为6.1米.
故答案为:6.1.
本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出灯杆的高度,体现了方程的思想.
二、解答题(本大题共3个小题,共30分)
24、应聘者将被录用
【解析】
根据加权平均数的定义分别计算A、B两人的成绩,比较即得答案.
【详解】
解:的成绩:,
的成绩:,
∵,
∴应聘者将被录用.
本题考查了加权平均数的计算,属于基础题型,正确理解题意、熟练掌握计算方法是解答的关键.
25、(1)每盏A型节能台灯的进价是60元;(2)A型台灯购进34盏,B型台灯购进66盏时获利最多,利润为3660元.
【解析】
(1)设每盏A型节能台灯的进价是x元,则B型节能台灯每盏进价为(x+40)元,根据用3000元购进的A型节能台灯与用5000元购进的B型节能台灯的数量相同,列方程求解;
(2)设购进B型台灯m盏,根据商场购进100盏台灯且规定B型台灯的进货数量不超过A型台灯数量的2倍,列不等式求解,进一步得到商场在销售完这批台灯时获利最多时的利润.
【详解】
解:(1)设每盏A型节能台灯的进价是x元,则B型节能台灯每盏进价为(x+40)元,
根据题意得, ,
解得:x=60,
经检验:x=60是原方程的解,
故x+40=100,
答:每盏A型节能台灯的进价是60元,则B型节能台灯每盏进价为100元;
(2)设购进B型节能台灯m盏,购进A型节能台灯(100﹣m)盏,
依题意有m≤2(100﹣m),
解得m≤66,
90﹣60=30(元),
140﹣100=40(元),
∵m为整数,30<40,
∴m=66,即A型台灯购进34盏,B型台灯购进66盏时获利最多,
34×30+40×66
=1020+2640
=3660(元).
此时利润为3660元.
答:(1)每盏A型节能台灯的进价是60元;(2)A型台灯购进34盏,B型台灯购进66盏时获利最多,利润为3660元.
本题考查分式方程的应用和一元一次不等式的应用,解题的关键是读懂题意,找出合适的等量关系和不等关系,列方程和不等式求解.
26、见解析.
【解析】
欲证明DE=DF,只要证明∠DEF=∠DFE.
【详解】
证明:由作图可知:BA=BE,
∴∠BAE=∠BEA,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAE=∠DFE,
∵∠AEB=∠DEF,
∴∠DEF=∠DFE,
∴DE=DF.
本题考查平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
题号
一
二
三
四
五
总分
得分
批阅人
A品牌手表
B品牌手表
进价(元/块)
700
100
售价(元/块)
900
160
组别
成绩(分数)
人数
A
95≤x<100
300
B
90≤x<95
a
C
85≤x<90
150
D
80≤x<85
200
E
75≤x<80
b
方案
A品牌(块)
B品牌(块)
①
48
52
②
49
51
③
50
50
相关试卷
这是一份2024年湖南省邵阳市绥宁县九年级数学第一学期开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广东省华师附中数学九年级第一学期开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年安徽省无为市九年级数学第一学期开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。