2024年湖南省岳阳市名校九上数学开学调研试题【含答案】
展开这是一份2024年湖南省岳阳市名校九上数学开学调研试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,被笑脸盖住的点的坐标可能是( )
A.(3,2)B.(-3,2)C.(-3,-2)D.(3,-2)
2、(4分)在一次“爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为6,3,6,5,5,6,9.这组数据的中位数和众数分别是( )
A.5,5B.6,6C.6,5D.5,6
3、(4分)一次函数y=kx+b中,y随x的增大而增大,b<0,则这个函数的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
4、(4分)某个函数自变量的取值范围是x≥-1,则这个函数的表达式为( )
A.y=x+1B.y=x2+1C.y=D.y=
5、(4分)等式•=成立的条件是( )
A.B.C.D.
6、(4分)下列由左边到右边的变形,属于因式分解的是( )
A.B.
C.D.
7、(4分)已知,则下列不等式一定成立的是( )
A.B.
C.D.
8、(4分)下列各组数据中,能做为直角三角形三边长的是( )。
A.1、2、3B.3、5、7C.32,42,52D.5、12、13
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)二次根式中,x的取值范围是 .
10、(4分)如图,的周长为26,点,都在边上,的平分线垂直于,垂足为点,的平分线垂直于,垂足为点,若,则的长为______.
11、(4分)已知是一元二次方程x2-4x+c=0的一个根,则方程的另一个根是______.
12、(4分)如图,正方形ABCD的边长为a,E是AB的中点,CF平分∠DCE,交AD于F,则AF的长为______.
13、(4分)如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形B、C、D的面积依次为4、3、9,则正方形A的面积为_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知a,b分别是6的整数部分和小数部分.
(1)求a,b的值;
(2)求3ab2的值.
15、(8分)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120∘ ,∠B=∠ADC=90°.E、F分别是 BC,CD 上的点.且∠EAF=60° . 探究图中线段BE,EF,FD 之间的数量关系. 小王同学探究此问题的方法是,延长 FD 到点 G,使 DG=BE,连结 AG,先证明△ABE≌△ADG, 再证明△AEF≌△AGF,可得出结论,他的结论应是_________;
探索延伸:如图2,若四边形ABCD中,AB=AD,∠B+∠D=180° .E,F 分别是 BC,CD 上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;
实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东 70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以55 海里/小时的速度前进,舰艇乙沿北偏东 50°的方向以 75 海里/小时的速度前进2小时后, 指挥中心观测到甲、乙两舰艇分别到达 E,F 处,且两舰艇之间的夹角为70° ,试求此时两舰 艇之间的距离.
16、(8分)如图,已知直线y=+1与x轴、y轴分别交于点A、B,以线AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90、点P(x、y)为线段BC上一个动点(点P不与B、C重合),设△OPA的面积为S。
(1)求点C的坐标;
(2)求S关于x的函数解析式,并写出x的的取值范围;
(3)△OPA的面积能于吗,如果能,求出此时点P坐标,如果不能,说明理由.
17、(10分)某工厂新开发生产一种机器,每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤x≤70,且为整数),函数y与自变量x的部分对应值如表
(1)求y与x之间的函数关系式;
(2)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.
①该厂第一个月生产的这种机器40台都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)
②若该厂每月生产的这种机器当月全部售出,则每个月生产多少台这种机器才能使每台机器的利润最大?
18、(10分)先化简,再求值:÷(x﹣),其中x=+1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若分式的值为正数,则x的取值范围_____.
20、(4分)如图,直线y=-x+4分别与x轴,y轴交于点A,B,点C在直线AB上,D是y轴右侧平面内一点,若以点O,A,C,D为顶点的四边形是菱形,则点D的坐标是_______________.
21、(4分)化简=_____.
22、(4分)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为__.
23、(4分)如图,在矩形中,分别是边和的中点,,则的长为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某种商品的定价为每件20元,商场为了促销,决定如果购买5件以上,则超过5件的部分打7折.
(1)求购买这种商品的货款y (元)与购买数量x (件)之间的函数关系;
(2)当x=3,x=6时,货款分别为多少元?
25、(10分)在△ABC中,AM是中线,D是AM所在直线上的一个动点(不与点A重合),DE∥AB交AC所在直线于点F,CE∥AM,连接BD,AE.
(1)如图1,当点D与点M重合时,观察发现:△ABM向右平移BC到了△EDC的位置,此时四边形ABDE是平行四边形.请你给予验证;
(2)如图2,图3,图4,是当点D不与点M重合时的三种情况,你认为△ABM应该平移到什么位置?直接在图中画出来.此时四边形ABDE还是平行四边形吗?请你选择其中一种情况说明理由.
26、(12分)如图,在△ABC中,点D,E分别是边BC,AC上的中点,连接DE,并延长DE至点F,使EF=ED,连接AD,AF,BF,CF,线段AD与BF相交于点O,过点D作DG⊥BF,垂足为点G.
(1)求证:四边形ABDF是平行四边形;
(2)当时,试判断四边形ADCF的形状,并说明理由;
(3)若∠CBF=2∠ABF,求证:AF=2OG.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
判断出笑脸盖住的点在第三象限,再根据第三象限内点的坐标特征解答.
【详解】
由图可知,被笑脸盖住的点在第三象限,
(3,2),(-3,2),(-3,-2),(3,-2)四个点只有(-3,-2)在第三象限.
故选C.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
2、B
【解析】
根据中位数的概念:是按顺序排列的一组数据中居于中间位置的数,将这一组数据进行排列,即可得出中位数;根据众数的定义:是一组数据中出现次数最多的数值,即可判定众数.
【详解】
解:将这一组数按照从高到低的顺序排列,得3,5,5,6,6,6,9,则其中位数为6;这组数中出现次数最多的数是6,即为众数,故答案为B.
此题主要考查对中位数和众数的理解,熟练掌握其内涵,即可解题.
3、B
【解析】
试题分析:根据题意,一次函数y=kx+b的值随x的增大而增大,即k>0,
又∵b<0,
∴这个函数的图象经过第一三四象限,
∴不经过第二象限,
故选B.
考点:一次函数图象与系数的关系.
4、C
【解析】
根据被开方数大于等于0,分母不等于0分别求出各选项的函数的取值范围,从而得解.
【详解】
解:A、自变量的取值范围是全体实数,故本选项错误;
B、自变量的取值范围是全体实数,故本选项错误;
C、由x+1≥0得,x≥-1,故本选项正确;
D、由x+10得,x-1,故本选项错误.
故选:C.
本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
5、C
【解析】
根据二次根式的乘法法则成立的条件:a≥0且b≥0,即可确定.
解:根据题意得:,
解得:x≥1.x≥– 1,
故答案是:x≥1.
“点睛”本题考查了二次根式的乘法法则,理解二次根式有意义的条件是关键.
6、D
【解析】
根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.
【详解】
解:A、右边不是积的形式,故本选项错误;
B、右边不是积的形式,故本选项错误;
C、x2-4y2=(x+2y)(x-2y),故本项错误;
D、是因式分解,故本选项正确.
故选:D.
此题考查因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.
7、C
【解析】
根据不等式的性质对选项进行逐一判断即可得到答案.
【详解】
解:A、因为, 不知道是正负数或者是0,不能得到,则A选项的不等式不成立;
B、因为,则,所以B选项的不等式不成立;
C、因为,则,所以C选项的不等式成立;
D、因为,则,所以D选项的不等式不成立.
故选C.
本题考查了不等式的性质,解题的关键是知道不等式两边同加上(或减去)一个数,不等号方向不变;不等式两边同乘以(或除以)一个正数,不等号方向不变;不等式两边同乘以(或除以)一个负数,不等号方向改变.
8、D
【解析】
先求出两小边的平方和,再求出大边的平方,看看是否相等即可.
【详解】
解:A、12+22≠32,所以以1、2、3为边不能组成直角三角形,故本选项不符合题意;
B、32+52≠72,所以以3、5、7为边不能组成直角三角形,故本选项不符合题意;
C、(32)2+(42)2≠(52)2,所以以32、42、52为边不能组成直角三角形,故本选项不符合题意;
D、52+122=132,所以以5、12、13为边能组成直角三角形,故本选项符合题意;
故选:D.
本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
10、3
【解析】
首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ.
【详解】
由题知为的垂直平分线,
,由题意知为的垂直平分线,.
,且,.
..
.又点,分别为,的中点,
.
本题考查等腰三角形的判定与性质,解题关键在于利用中位线定理求出PQ.
11、
【解析】
【分析】由于已知方程的一根,并且一次项系数也已知,根据两根之和公式可以求出方程的另一根.
【详解】设方程的另一根为x1,由x1+2-=4,得x1=2+.
故答案为2+.
【点睛】根据方程中各系数的已知情况,合理选择根与系数的关系式是解决此类题目的关键.
12、a
【解析】
找出正方形面积等于正方形内所有三角形面积的和求这个等量关系,列出方程求解,求得DF,根据AF=a-DF即可求得AF.
【详解】
作FH⊥CE,连接EF,
∵∠FHC=∠D=90°,∠HCF=∠DCF,CF=CF
∴△CHF≌△CDF,
又∵S正方形ABCD=S△CBE+S△CDF+S△AEF+S△CEF,
设DF=x,则a2= CE•FH
∵FH=DF,CE= ,
∴整理上式得:2a-x= x,
计算得:x= a.
AF=a-x= a.
故答案为a.
本题考查了转换思想,考查了全等三角形的证明,求AF,转化为求DF是解题的关键.
13、1
【解析】
根据勾股定理的几何意义:得到S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,求解即可.
【详解】
由题意:S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,∴S正方形A+S正方形B=S正方形D﹣S正方形C.
∵正方形B,C,D的面积依次为4,3,9,∴S正方形A+4=9﹣3,∴S正方形A=1.
故答案为1.
本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平方和等于斜边的平方.
三、解答题(本大题共5个小题,共48分)
14、(1)a=3, b=3-; (2)6-1.
【解析】
(1)先求出范围,再两边都乘以-1,再两边都加上6,即可求出a、b;
(2)把a、b的值代入求出即可.
【详解】
(1)∵2<<3,
∴-3<-<-2,
∴3<6-<4,
∴a=3,b=6--3=3-;
(2)3a-b2=3×3-(3-)2=9-9+6-1=6-1.
本题考查了估算无理数的大小和有理数的混合运算的应用,主要考查学生的计算能力.
15、问题背景:EF=BE+DF,理由见解析;探索延伸:结论仍然成立,理由见解析;实际应用:210海里.
【解析】
问题背景:延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;
探索延伸:延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;
实际应用:连接EF,延长AE、BF相交于点C,然后与(2)同理可证.
【详解】
问题背景:EF=BE+DF,证明如下:
在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF,
故答案为 EF=BE+DF;
探索延伸:结论EF=BE+DF仍然成立,
理由:延长FD到点G.使DG=BE,连结AG,如图2,
在△ABE和△ADG中,,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
实际应用:如图3,连接EF,延长AE、BF相交于点C,
∵∠AOB=30°+90°+(90°-70°)=140°,∠EOF=70°,
∴∠EOF=∠AOB,
又∵OA=OB,∠OAC+∠OBC=(90°-30°)+(70°+50°)=180°,
∴符合探索延伸中的条件,
∴结论EF=AE+BF成立,
即EF=2×(45+75)=260(海里),
答:此时两舰艇之间的距离是260海里.
本题考查了全等三角形的判定以及全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.
16、(1)(4,3);(2)S=, 0<x<4;(3)不存在.
【解析】
(1)直线y=+1与x轴、y轴分别交于点A、B,可得点A、B的坐标,过点C作CH⊥x轴于点H,如图1,易证△AOB≌△CHA,从而得到AH=OB、CH=AO,就可得到点C的坐标;
(2)易求直线BC解析式,过P点作PG垂直x轴,由△OPA的面积=即可求出S关于x的函数解析式.
(3)当S=求出对应的x即可.
【详解】
解:(1)∵直线y=+1与x轴、y轴分别交于点A、B,
∴A点(3,0),B点为(0,1),
如图:过点C作CH⊥x轴于点H,
则∠AHC=90°.
∴∠AOB=∠BAC=∠AHC=90°,
∴∠OAB=180°-90°-∠HAC=90°-∠HAC=∠HCA.
在△AOB和△CHA中,
,
∴△AOB≌△CHA(AAS),
∴AO=CH=3,OB=HA=1,
∴OH=OA+AH=4
∴点C的坐标为(4,3);
(2)设直线BC解析式为y=kx+b,由B(0,1),C(4,3)得:
,解得,
∴直线BC解析式为,
过P点作PG垂直x轴,△OPA的面积=,
∵PG=,OA=3,
∴S==;
点P(x、y)为线段BC上一个动点(点P不与B、C重合),
∴0<x<4.
∴S关于x的函数解析式为S=, x的的取值范围是0<x<4;
(3)当s=时,即,解得x=4,不合题意,故P点不存在.
本题主要考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、勾股定理、三角形的面积公式等知识,构造全等三角形是解决第(1)小题的关键.
17、 (1)y=-0.5x+65(10≤x≤70,且为整数);(2)①200万元;②10.
【解析】
(1)根据函数图象和图象中的数据可以求得y与x的函数关系式;
(2)①根据函数图象可以求得z与a的函数关系式,然后根据题意可知x=40,z=40,从而可以求得该厂第一个月销售这种机器的总利润;
②根据题意可以得到每台的利润和台数之间的关系式,从而可以解答本题.
【详解】
解:(1)设y与x的函数关系式为y=kx+b,
,得,
即y与x的函数关系式为y=-0.5x+65(10≤x≤70,且为整数);
(2)①设z与a之间的函数关系式为z=ma+n,
,得,
∴z与a之间的函数关系式为z=-a+90,
当z=40时,40=-a+90,得a=50,
当x=40时,y=-0.5×40+65=45,
40×50-40×45
=2000-1800
=200(万元),
答:该厂第一个月销售这种机器的总利润为200万元;
②设每台机器的利润为w万元,
W=(-x+90)-(-0.5x+65)=-x+25,
∵10≤x≤70,且为整数,
∴当x=10时,w取得最大值,
答:每个月生产10台这种机器才能使每台机器的利润最大.
故答案为(1)y=-0.5x+65(10≤x≤70,且为整数);(2)①200万元;②10.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.
18、.
【解析】
先算括号里面的,再算除法,把分式化为最简公式,把x的值代入进行计算即可
【详解】
原式=
=
= ,
当x= +1时,原式=.
此题考查分式的化简求值,掌握运算法则是解题关键
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x>1
【解析】
试题解析:由题意得:
>0,
∵-6<0,
∴1-x<0,
∴x>1.
20、(2,−2)或(6,2).
【解析】
设点C的坐标为(x,-x+4).分两种情况,分别以C在x轴的上方、C在x轴的下方做菱形,画出图形,根据菱形的性质找出点C的坐标即可得出D点的坐标.
【详解】
∵一次函数解析式为线y=-x+4,
令x=0,解得y=4
∴B(0,4),
令y=0,解得x=4
∴A(4,0),
如图一,∵四边形OADC是菱形,
设C(x,-x+4),
∴OC=OA=,
整理得:x2−6x+8=0,
解得x1=2,x2=4,
∴C(2,2),
∴D(6,2);
如图二、如图三,∵四边形OADC是菱形,
设C(x,-x+4),
∴AC=OA=,
整理得:x2−8x+12=0,
解得x1=2,x2=6,
∴C(6,−2)或(2,2)
∴D(2,−2)或(−2,2)
∵D是y轴右侧平面内一点,故(−2,2)不符合题意,
故答案为(2,−2)或(6,2).
本题考查了一次函数图象上点的坐标特征以及菱形的性质,解题的关键是确定点C、D的位置.本题属于中档题,难度不大,在考虑菱形时需要分类讨论.
21、
【解析】
,
故答案为
考点:分母有理化
22、
【解析】
延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.
【详解】
延长AB至M,使BM=AE,连接FM,
∵四边形ABCD是菱形,∠ADC=120°
∴AB=AD,∠A=60°,
∵BM=AE,
∴AD=ME,
∵△DEF为等边三角形,
∴∠DAE=∠DFE=60°,DE=EF=FD,
∴∠MEF+∠DEA═120°,∠ADE+∠DEA=180°﹣∠A=120°,
∴∠MEF=∠ADE,
∴△DAE≌EMF(SAS),
∴AE=MF,∠M=∠A=60°,
又∵BM=AE,
∴△BMF是等边三角形,
∴BF=AE,
∵AE=t,CF=2t,
∴BC=CF+BF=2t+t=3t,
∵BC=4,
∴3t=4,
∴t=
考点:(1)、菱形的性质;(2)、全等三角形的判定与性质;(3)、等边三角形的性质.
23、6
【解析】
连接AC,根据三角形中位线性质可知AC=2EF,最后根据矩形对角线相等进一步求解即可.
【详解】
如图所示,连接AC,
∵E、F分别为AD、CD的中点,EF=3,
∴AC=2EF=6,
∵四边形ABCD为矩形,
∴BD=AC=6,
故答案为:6.
本题主要考查了三角形中位线性质与矩形性质的综合运用,熟练掌握相关概念是解题关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)y= (2)114
【解析】
试题分析:(1)根据题目条件:如果购买5件以上,则超过5件的部分打7折即可得到y (元)与购买数量x (件)之间的函数关系;
(2)把x=3,x=6分别代入(1)中的函数关系式即可求出贷款数.
试题解析:
(1)根据商场的规定,
当0<x≤5时,y=20x,
当x>5时,y=20×5+(x﹣5)×20×0.7=100+14(x﹣5),
所以,货款y (元)与购买数量x (件)之间的函数关系是
Y= (x是正整数);
(2)当x=3时,y=20×3=60 (元)
当x=6时,y=100+14×(6﹣5)=114 (元).
25、(1)见解析;(2)画图见解析.
【解析】
(1)根据一组对边平行且相等可以证明;
(2)根据一组对边平行且相等可以证明.
【详解】
(1)∵平移,
∴AB=DE,
且DE∥BA,
∴四边形ABDE是平行四边形;
(2)平移到△DEM'位置,如图所示:
如图2∵平移,
∴AB=DE,
且DE∥BA,
∴四边形ABDE是平行四边形.
本题考查了平行四边形的判定,熟练运用判定解决问题是本题关键.
26、 (1)证明见解析;(2)四边形ADCF是矩形,理由见解析;(3)证明见解析.
【解析】
(1)欲证明四边形ABDF是平行四边形,只要证明AF∥BD,AF=BD即可.
(2)结论:四边形ADCF是矩形,只要证明∠DAF=90°即可.
(3)作AM⊥DG 于M,连接BM,先证明AM=2OG,再证明AM=AF即可解决问题.
【详解】
(1)证明:∵点D,E分别是边BC,AC上的中点,
∴ED∥AB,AE=CE,
∵EF=ED,
∴四边形ADCF是平行四边形,
∴AF∥BC,
∴四边形ABDF是平行四边形;
(2)四边形ADCF是矩形.
理由:∵AE=DF,EF=ED,
∴AE=EF=DE,
∴∠EAF=∠AFE,∠DAE=∠ADE,
∴∠DAF=∠EAF+∠EAD=×180°=90°,
由(1)知:四边形ADCF是平行四边形;
∴四边形ADCF是矩形;
(3)证明:作AM⊥DG 于M,连接BM.
∵四边形ABDF是平行四边形,
∴OA=OD,∵OG∥AM,
∴GM=GD,
∴AM=2OG,
∵BG⊥DM,GM=GD,
∴BM=BD,
∴∠CBF=∠MBG,
∵∠CBF=2∠ABF,
∴∠ABM=∠ABF,
∵AM∥BF,
∴∠MAB=∠ABF,
∴∠MAB=∠MBA,
∴AM=BM=BD=AF=2OG,
∴AF=2OG.
本题考查四边形综合题、平行四边形的判定和性质、矩形的判定和性质、三角形中位线定理等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线.
题号
一
二
三
四
五
总分
得分
x单位:台)
10
20
30
y(单位:万元/台)
60
55
50
相关试卷
这是一份2024年湖南省岳阳市九校数学九上开学综合测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖南省益阳市数学九上开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖南省益阳市名校数学九上开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。