2024年湖南省长沙市周南教育集团九年级数学第一学期开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)位参加歌唱比赛的同学的成绩各不相同,按成绩取前位进入决赛。如果小尹知道了自己的成绩后,要判断自己能否进入决赛,他还要知道这位同学成绩的()
A.平均数B.众数C.方差D.中位数
2、(4分)菱形ABCD的周长是20,对角线AC=8,则菱形ABCD的面积是( )
A.12B.24C.40D.48
3、(4分)在中,,,,点为边上一动点,于点,于点,则的最小值为( )
A.B.C.D.
4、(4分)五边形的内角和是( )
A.180°B.360°C.540°D.720°
5、(4分)一个多边形的每个内角均为120°,则这个多边形是( )
A.四边形B.五边形C.六边形D.七边形
6、(4分)如图,□ABCD的对角线相交于点O,下列式子不一定正确的是( )
A.AC=BDB.AB=CDC.∠BAD=∠BCDD.AO=CO
7、(4分)在同一直角坐标系中,若直线y=kx+3与直线y=-2x+b平行,则( )
A.k=-2,b≠3 B.k=-2,b=3 C.k≠-2,b≠3 D.k≠-2,b=3
8、(4分)在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( )
A.=-5B.=+5C.=8x-5D.=8x+5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,一只蚂蚁从棱长为1的正方体纸箱的A点沿纸箱表面爬到B点,那么它所爬行的最短路线的长是_____.
10、(4分)某市对400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为_____.
11、(4分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见,现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为______.
12、(4分)如图,直线,直线分别交,,于点,,,直线分别交,,于点,,.若,则______.
13、(4分)如图所示,已知AB= 6,点C,D在线段AB上,AC =DB = 1,P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G,当点P从点C运动到点D时,则点G移动路径的长是_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某文具商店的某种毛笔每支售价25元,书法练习本每本售价5元,该商店为促销正在进行优惠活动:
活动1:买一支毛笔送一本书法练习本;
活动2:按购买金额的九折付款.
某学校准备为书法兴趣小组购买这种毛笔20支,书法练习本x(x≥20)本.
(1)写出两种优惠活动实际付款金额y1(元),y2(元)与x(本)之间的函数关系式;
(2)请问:该校选择哪种优惠活动更合算?
15、(8分)如图,一次函数的图象与反比例函数()的图象交于A(-3,2),B(n,4)两点.
(1)求一次函数与反比例函数的解析式;
(2)点C(-1,0)是轴上一点,求△ABC的面积.
16、(8分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.
(1)甲乙两种图书的售价分别为每本多少元?
(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)
17、(10分)如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.
(1)求∠ABC的度数;
(2)如果AC=4,求DE的长.
18、(10分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.
(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;
(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;
(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)频数直方图中,一小长方形的频数与组距的比值是6,组距为3,则该小组的频数是_____.
20、(4分)在正方形ABCD中,对角线AC=2cm,那么正方形ABCD的面积为_____.
21、(4分)若多项式,则=_______________.
22、(4分)已知正方形的对角线为4,则它的边长为_____.
23、(4分)某市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物指数如表,则该周PM2.5指数的众数和中位数分别是________
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,△ABC的中线BD,CE交于点O,F,G分别是BO,CO的中点.
(1)填空:四边形DEFG是 四边形.
(2)若四边形DEFG是矩形,求证:AB=AC.
(3)若四边形DEFG是边长为2的正方形,试求△ABC的周长.
25、(10分)如图所示,已知一次函数的图像直线AB经过点(0,6)和点(-2,0).
(1)求这个函数的解析式;
(2)直线AB与x轴交于点A,与y轴交于点B,求△AOB的面积.
26、(12分)(1)计算:
(2)计算:
(3)求不等式组的整数解.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.
【详解】
由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少.
故选D.
此题考查统计量的选择,解题关键在于掌握中位数的意义.
2、B
【解析】
解:∵菱形ABCD的周长是20,∴AB=20÷4=5,AC⊥BD,OA=AC=4,∴OB= =3,∴BD=2OB=6,∴菱形ABCD的面积是: AC•BD=×8×6=1.故选B.
点睛:此题考查了菱形的性质以及勾股定理.解题的关键是熟练运用勾股定理以及菱形的各种性质.
3、B
【解析】
根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.
【详解】
解:∵在△ABC中,AB=3,AC=1,BC=5,
∴AB2+AC2=BC2,
即∠BAC=90°.
又PE⊥AB于E,PF⊥AC于F,
∴四边形AEPF是矩形,
∴EF=AP.
∵M是EF的中点,
∴AM=EF=AP.
因为AP的最小值即为直角三角形ABC斜边上的高,即2.1,
∴EF的最小值是2.1.
故选B.
题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质,要能够把要求的线段的最小值转换为便于分析其最小值的线段.
4、C
【解析】
根据n边形的内角和为:,且n为整数,求出五边形的内角和是多少度即可.
【详解】
解:五边形的内角和是:
(5﹣2)×180°
=3×180°
=540°
故选:C.
此题主要考查了多边形的内角和定理,要熟练掌握,解答此题的关键是要明确n边形的内角和为:,且n为整数.
5、C
【解析】
由题意得,180°(n-2)=120°,
解得n=6.故选C.
6、A
【解析】
根据平行四边形的性质逐项判断即可得.
【详解】
A、平行四边形的对角线不一定相等,则不一定正确,此项符合题意
B、平行四边形的两组对边分别相等,则一定正确,此项不符题意
C、平行四边形的两组对角分别相等,则一定正确,此项不符题意
D、平行四边形的两对角线互相平分,则一定正确,此项不符题意
故选:A.
本题考查了平行四边形的性质,熟记平行四边形的性质是解题关键.
7、A
【解析】试题解析:∵直线y=kx+1与直线y=-2x+b平行,
∴k=-2,b≠1.
故选A.
8、B
【解析】
根据题意知:8x的倒数+5=3x的倒数,据此列出方程即可.
【详解】
根据题意,可列方程:=+5,
故选B.
本题考查了由实际问题抽象出分式方程,关键是读懂题意,找到3x的倒数与8x的倒数间的等量关系,列出方程.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
把此正方体的一面展开,然后在平面内,利用勾股定理求点A和点B间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于棱长,另一条直角边长等于两条棱长,利用勾股定理可求得.
【详解】
解:∵展开后由勾股定理得:AB2=12+(1+1)2=5,
∴AB=.
故答案为
本题考查了平面展开﹣最短路径问题,“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.
10、1
【解析】
分析:根据频率= 或频数=频率×数据总和解答.
详解:由题意,该组的人数为:400×0.25=1(人).
故答案为1.
点睛:本题考查了频数与频率之间的计算,熟知频数、频率及样本总数之间的关系是解决本题的关键.
11、1
【解析】
先求出100名学生中持“赞成”意见的学生人数所占的比例,再用总人数相乘即可.
【详解】
解:∵100名学生中持“反对”和“无所谓”意见的共有30名学生,
∴持“赞成”意见的学生人数=100-30=70名,
∴全校持“赞成”意见的学生人数约=2400×=1(名).
故答案为:1.
本题考查的是用样本估计总体,先根据题意得出100名学生中持赞成”意见的学生人数是解答此题的关键.
12、
【解析】
先由,根据比例的性质可得,再根据平行线分线段成比例定理求解即可.
【详解】
解:
∴
故答案为。
本题考查了平行线分线段成比例定理,掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键。
13、1
【解析】
分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.
【详解】
解:如图,分别延长AE,BF交于点H,
∵∠A=∠FPB=60°,
∴AH∥PF,
∵∠B=∠EPA=60°,
∴BH∥PE
∴四边形EPFH为平行四边形,
∴EF与HP互相平分,
∵点G为EF的中点,
∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,
∴G的运动轨迹为△HCD的中位线MN,
∵CD=6-1-1=4,
∴MN==1,
∴点G移动路径的长是1,
故答案为:1.
本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.
三、解答题(本大题共5个小题,共48分)
14、(1),;(1)买10支毛笔选择活动1,赠送10本练习本,剩下(x-10)本练习本选择活动1.
【解析】
(1)活动1:10支毛笔的付款金额,加上(x-10)本练习本的付款金额即可;活动1:将10支毛笔和x本练习本的总金额乘以0.9即可.
(1)可以任意选择一个优惠活动,也可两个活动同时选择,三种方案进行对比即可.
【详解】
(1)
(1)第三种方案:买10支毛笔选择活动1,赠送10本练习本,剩下(x-10)本练习本选择活动1,此时实际付款金额
显然
令,得
解得
因此当时,最优惠的购买方案为:买10支毛笔选择活动1,赠送10本练习本,剩下(x-10)本练习本选择活动1.
本题考查一次函数的应用,理解两种优惠活动的付款金额计算方式是解题的关键.
15、(1),;(2).
【解析】
(1)把A点坐标代入反比例函数的解析式,即可求出反比例函数的解析式,再求出B点坐标,把A、B的坐标代入一次函数的解析式,得出方程组,求出方程组的解,即可得出一次函数的解析式;
(2)由面积的和差关系可求解.
【详解】
(1)∵点A(﹣3,2)在反比例函数y(x<0)的图象上,∴m=﹣3×2=﹣6,∴反比例函数解析式为:y.
∵点B(n,4)在反比例函数y(x<0)的图象,∴n,∴点B(,4).
∵点A,点B在一次函数y=kx+b的图象上,∴,解得:,∴一次函数解析式为:yx+6;
(2)设一次函数与x轴交于点D.在yx+6中,令y=0,解得:x=-4.1.
∵C(-1,0),∴CD=3.1,∴S△ABC = S△DBC-S△ADC==.
本题考查了一次函数和反比例函数的交点问题的应用,三角形的面积,用待定系数法求函数的图象,主要考查学生的计算能力,题目比较好,难度适中.
16、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.
【解析】
(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;
(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.
【详解】
(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:
,
解得:.
经检验,是原方程的解.
所以,甲种图书售价为每本元,
答:甲种图书售价每本28元,乙种图书售价每本20元.
(2)设甲种图书进货本,总利润元,则
.
又∵,
解得:.
∵随的增大而增大,
∴当最大时最大,
∴当本时最大,
此时,乙种图书进货本数为(本).
答:甲种图书进货533本,乙种图书进货667本时利润最大.
本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.
17、(1);(2).
【解析】
试题分析:(1)要想求出∠ABC的度数,须知道∠DAB的度数,由菱形性质和线段垂直平分线的性质可证出△ABD是等边三角形,∴∠DAB=60°,于是;(2)先证△ABO≌△DBE,从而知道DE=AO,AO=AC的一半,于是DE的长就知道了.
试题解析:(1)∵四边形ABCD是菱形,,∥,∴.∵为的中点,,∴.∴.∴ △为等边三角形.∴.∴.(2)∵四边形是菱形, ∴于,∵于,∴.∵∴.∴.
考点:1.菱形性质;2.线段垂直平分线性质;3.等边三角形的判定与性质.
18、(1)y1=36x;(2)当0≤x≤10时,y2=42x,当x>10时,y2=33.6x+84;(3)若购买35个书包,选A,B品牌都一样,若购买35个以上书包,选B品牌划算,若购买书包个数超过10个但小于35个,选A品牌划算
【解析】
(1)直接利用购买A品牌书包按原价的九折销售,进而得出函数关系式;
(2)分别利用当0≤x≤10时,当x>10时,分别得出函数关系式;
(3)分别利用①当y1=y2时,②当y1>y2时,③当y1<y2时,求出答案.
【详解】
解:(1)由题意可得:y1=36x;
(2)当0≤x≤10时,y2=42x;
当x>10时,y2=42×10+42×0.8(x-10)=33.6x+84;
(3)若x>10,则y2=33.6x+84,
①当y1=y2时,36x=33.6x+84,
解得:x=35;
②当y1>y2时,36x>33.6x+84,
解得:x>35;
③当y1<y2时,36x<33.6x+84,
解得:x<35;
∵x>10,
∴10<x<35,
答:若购买35个书包,选A,B品牌都一样;若购买35个以上书包,选B品牌划算;
若购买书包个数超过10个但小于35个,选A品牌划算.
此题主要考查了一次函数的应用,正确得出函数关系式进而分类讨论是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据“频数:组距=2且组距为3”可得答案.
【详解】
根据题意知,该小组的频数为2×3=1.
故答案为:1.
本题考查了频数分布直方图,解题的关键是根据题意得出频数:组距=2.
20、2
【解析】
根据正方形的面积公式可求正方形面积.
【详解】
正方形面积==2
故答案为2.
本题考查了正方形的性质,利用正方形的面积=对角线积的一半解决问题.
21、-1
【解析】
利用多项式乘法去括号,根据对应项的系数相等即可求解.
【详解】
∵
∴,
故答案为:-1.
本题主要考查了因式分解与整式的乘法互为逆运算,并且考查了代数式相等的条件:对应项的系数相等.
22、.
【解析】
根据正方形的性质和勾股定理求边长即可.
【详解】
∵四边形ABCD是正方形,∴AO=DOAC4=2,AO⊥DO,∴△AOD是直角三角形,∴AD.
故答案为:2.
本题考查了勾股定理及正方形性质,属于基础题,比较简单.
23、150,1
【解析】
根据众数和中位数的概念求解.
【详解】
这组数据按照从小到大的顺序排列为:150,150,150,1,1,160,165,
则众数为:150,
中位数为:1.
故答案为:150,1
此题考查中位数,众数,解题关键在于掌握其概念
二、解答题(本大题共3个小题,共30分)
24、(1)平行;(2)见解析;(3).
【解析】
(1)根据三角形中位线定理得出DE∥BC,DE=BC,FG∥BC,FG=BC,那么DE∥FG,DE=FG,利用有一组对边平行且相等的四边形是平行四边形即可得出四边形DEFG是平行四边形;
(2)先由矩形的性质得出OD=OE=OF=OG.再根据重心的性质得到OB=2OD,OC=2OE,等量代换得出OB=OC.利用SAS证明△BOE≌△COD,得出BE=CD,然后根据中点的定义即可证明AB=AC;
(3)连接AO并延长交BC于点M,先由三角形中线的性质得出M为BC的中点,由(2)得出AB=AC,根据等腰三角形三线合一的性质得出AM⊥BC,再由三角形中位线定理及三角形重心的性质得出BC=2FG=1,AM=AO=6,由勾股定理求出AB=2,进而得到△ABC的周长.
【详解】
(1)解:∵△ABC的中线BD,CE交于点O,
∴DE∥BC,DE=BC,
∵F,G分别是BO,CO的中点,
∴FG∥BC,FG=BC,
∴DE∥FG,DE=FG,
∴四边形DEFG是平行四边形.
故答案为平行;
(2)证明:∵四边形DEFG是矩形,
∴OD=OE=OF=OG.
∵△ABC的中线BD,CE交于点O,
∴点O是△ABC的重心,
∴OB=2OD,OC=2OE,
∴OB=OC.
在△BOE与△COD中,
,
∴△BOE≌△COD(SAS),
∴BE=CD,
∵E、D分别是AB、AC中点,
∴AB=AC;
(3)解:连接AO并延长交BC于点M.
∵三角形的三条中线相交于同一点,△ABC的中线BD、CE交于点O,
∴M为BC的中点,
∵四边形DEFG是正方形,
由(2)可知,AB=AC,
∴AM⊥BC.
∵正方形DEFG边长为2,F,G分别是BO,CO的中点,
∴BC=2FG=1,BM=MC=BC=2,AO=2EF=1,
∴AM=AO=6,
∴AB===2,
∴△ABC的周长=AB+AC+BC=1+1.
本题考查了平行四边形的判定与性质,三角形中位线性质定理,矩形的性质,三角形重心的性质,等腰三角形的性质,全等三角形的判定与性质,其中三角形的中位线性质定理为证明线段相等和平行提供了依据.
25、 (1)一次函数的解析式为:y=3x+6;(2)△AOB的面积=×6×2=6.
【解析】
(1)设一次函数的解析式为y=kx+b(k≠0),再把点(0,6)和点(-2,0)代入求出k、b的值即可;
(2)求出直线与坐标轴的交点,再利用三角形的面积公式即可得出结论.
【详解】
(1)设一次函数的解析式为y=kx+b(k≠0),
∵一次函数的图象经过点点(0,6)和点(-2,0),
∴,
解得,
∴一次函数的解析式为:y=3x+6;
(2)∵一次函数的解析式为y=3x+6,
∴与坐标轴的交点为(0,6)和(-2,0),
∴△AOB的面积=×6×2=6.
本题考查待定系数法求一次函数解析式和一次函数图象上点的坐标特征,解题的关键是掌握待定系数法求一次函数解析式.
26、(1);(2);(3)不等式组的整数解是0.
【解析】
(1)先把二次根式化为最简二次根式,然后合并即可;
(2)利用完全平方公式和平方差公式计算;
(3)分别解两个不等式得到和x<1,然后根据大小小大取中间确定不等式组的解集,从而得到不等式组的整数解
【详解】
解:(1)原式;
(2)原式;
(3)
解不等式①得,;
解不等式②得,,
∴不等式组的解集为,
∴不等式组的整数解是0.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍,也考查了解不等式组.
题号
一
二
三
四
五
总分
得分
批阅人
PM2.5指数
150
155
160
165
天 数
3
2
1
1
2024-2025学年湖南省长沙市一中学教育集团九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年湖南省长沙市一中学教育集团九年级数学第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖南省长沙市周南教育集团2024年中考数学诊断试卷(一) (2): 这是一份湖南省长沙市周南教育集团2024年中考数学诊断试卷(一) (2),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖南省长沙市周南教育集团中考数学诊断试卷(一)(含解析): 这是一份2024年湖南省长沙市周南教育集团中考数学诊断试卷(一)(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。