2024年湖南省株洲市荷塘区九年级数学第一学期开学调研试题【含答案】
展开
这是一份2024年湖南省株洲市荷塘区九年级数学第一学期开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在下列条件中,不能确定四边形ABCD为平行四边形的是( ).
A.∠A=∠C,∠B=∠DB.∠A+∠B=180°,∠C+∠D=180°
C.∠A+∠B=180°,∠B+∠C=180°D.∠A=∠B=∠C=90°
2、(4分)化简的结果是( )
A.3B.2C.2D.2
3、(4分)在以x为自变量, y为函数的关系式y=5πx中,常量为( )
A.5B.πC.5πD.πx
4、(4分)若一次函数的图象如图所示,则不等式的解集为( )
A.B.C.D.
5、(4分)如图所示的是一扇高为2m,宽为1.5m的长方形门框,光头强有一些薄木板要通过门框搬进屋内,在不能破坏门框,也不能锯短木板的情况下,能通过门框的木板最大的宽度为( )
A.1.5mB.2mC.2.5mD.3m
6、(4分)如图,在 ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( ).
A.1个B.2个C.3个D.4个
7、(4分)直线不经过的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
8、(4分)若关于的方程有增根,则的值是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分解因式:9x2y﹣6xy+y=_____.
10、(4分)若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时,工作人员想利用如图所示的直角墙角(两边足够长)和长为38m的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆,且AB大于AD.设AD为xm,依题意可列方程为______.
11、(4分)命题“如果a2=b2,那么a=b.”的否命题是__________.
12、(4分)设、是方程的两个实数根,则的值为_____.
13、(4分)若关于x的方程(m-2)x|m|+2x-1=0是一元二次方程,则m=________.
三、解答题(本大题共5个小题,共48分)
14、(12分)为了绿化环境,某中学八年级(3班)同学都积极参加了植树活动,下面是今年3月份该班同学植树情况的扇形统计图和不完整的条形统计图:
请根据以上统计图中的信息解答下列问题.
(1)植树3株的人数为 ;
(2)扇形统计图中植树为1株的扇形圆心角的度数为 ;
(3)该班同学植树株数的中位数是
(4)小明以下方法计算出该班同学平均植树的株数是:(1+2+3+4+5)÷5=3(株),根据你所学的统计知识
判断小明的计算是否正确,若不正确,请写出正确的算式,并计算出结果
15、(8分)如图,抛物线与直线相交于,两点,且抛物线经过点
(1)求抛物线的解析式.
(2)点是抛物线上的一个动点(不与点点重合),过点作直线轴于点,交直线于点.当时,求点坐标;
(3)如图所示,设抛物线与轴交于点,在抛物线的第一象限内,是否存在一点,使得四边形的面积最大?若存在,请求出点的坐标;若不存在,说明理由.
16、(8分)已知y﹣2与x+1成正比例函数关系,且x=﹣2时,y=1.
(1)写出y与x之间的函数关系式;
(2)求当x=﹣3时,y的值;
17、(10分)先阅读材料:
分解因式:.
解:令,
则
所以.
材料中的解题过程用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你运用这种思想方法解答下列问题:
(1)分解因式:__________;
(2)分解因式:;
(3)证明:若为正整数,则式子的值一定是某个整数的平方.
18、(10分)已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD=8,求菱形的周长和面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某市出租车白天的收费起步价为10元,即路程不超过时收费10元,超过部分每千米收费2元,如果乘客白天乘坐出租车的路程为 ,乘车费为元,那么与之间的关系式为__________________.
20、(4分)在平面直角坐标系xOy中,点A(2,﹣3)关于x轴对称的点B的坐标是______.
21、(4分)已知点A在反比例函数y=(k≠0)的图象上,过点A作AM⊥x轴于点M,△AMO的面积为3,则k=_____.
22、(4分)如图,P是矩形ABCD内一点,,,,则当线段DP最短时, ________.
23、(4分)若m+n=3,则2m2+4mn+2n2-6的值为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)下面是小明设计的“作平行四边形ABCD的边AB的中点”的尺规作图过程.
已知:平行四边形ABCD.
求作:点M,使点M 为边AB 的中点.
作法:如图,
①作射线DA;
②以点A 为圆心,BC长为半径画弧,
交DA的延长线于点E;
③连接EC 交AB于点M .
所以点M 就是所求作的点.
根据小明设计的尺规作图过程,
(1)使用直尺和圆规,补全图形 (保留作图痕迹);
(2)完成下面的证明.
证明:连接AC,EB.
∵四边形ABCD 是平行四边形,
∴AE∥BC.
∵AE= ,
∴四边形EBCA 是平行四边形( )(填推理的依据) .
∴AM =MB ( )(填推理的依据) .
∴点M 为所求作的边AB的中点.
25、(10分)在一次晚会上,大家做投飞镖的游戏.只见靶子设计成如图的形式.已知从里到外的三个圆的半径分别为l,2,3,并且形成A,B,C三个区域.如果飞镖没有停落在最大圆内或只停落在圆周上,那么可以重新投镖.
(1)分别求出三个区域的面积;
(2)雨薇与方冉约定:飞镖停落在A、B区域雨薇得1分,飞镖落在C区域方冉得1分.你认为这个游戏公平吗? 为什么? 如果不公平,请你修改得分规则,使这个游戏公平.
26、(12分)甲、乙两个超市以同样的价格出售同样的商品,但各自推出不同的优惠方案:在甲超市累计购物超过100元后,超过100元的部分按80%收费;在乙超市累计购物超过50元后,超过50元的部分按90%收费.设小明在同一超市累计购物元,他在甲超市购物实际付费(元).在乙超市购物实际付费(元).
(1)分别求出,与的函数关系式.
(2)随着小明累计购物金额的变化,分析他在哪家超市购物更合算.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平行四边形的多种判定方法,分别分析A、B、C、D选项是否可以证明四边形ABCD为平行四边形,即可解题.
【详解】
A.∠A=∠C,∠B=∠D,根据四边形的内角和为360°,可推出∠A+∠B=180°,所以AD∥BC,同理可得AB∥CD,所以四边形ABCD为平行四边形,故A选项正确;
B.∠A+∠B=180°,∠C+∠D=180°即可证明AD∥BC,条件不足,不足以证明四边形ABCD为平行四边形,故B选项错误.
C.∠A+∠B=180°,∠B+∠C=180°即可证明AB∥CD,AD∥BC,根据平行四边形的定义可以证明四边形ABCD为平行四边形,故C选项正确;
D.∠A=∠B=∠C=90°,则∠D=90°,四个内角均为90°可以证明四边形ABCD为矩形,故D选项正确;
故选B.
2、A
【解析】
直接利用二次根式的性质化简得出答案.
【详解】
.
故选A.
此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.
3、C
【解析】
根据常量的定义解答即可,常量是指在某一个变化过程中,固定不变的量.
【详解】
在以x为自变量, y为函数的关系式y=5πx中,常量为5π,
故选:C.
考查了变量关系中的常量的定义,熟记常量定义是解题的关键,注意π是常量.
4、C
【解析】
直接根据图像在x轴上方时所对应的x的取值范围进行解答即可.
【详解】
由图像可知,不等式的解集为:
故答案选:C
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k≠0)在x轴上(或下)方部分所有的点的横坐标所构成的集合.
5、C
【解析】
利用勾股定理求出门框对角线的长度,由此即可得出结论.
【详解】
解:如图,门框的对角线长为:=2.5m,
所以能通过门框的木板的最大宽度为2.5m,
故选C.
本题考查了勾股定理的应用,利用勾股定理求出长方形门框对角线的长度是解题的关键.
6、D
【解析】
分析:如图延长EF交BC的延长线于G,取AB的中点H连接FH.证明△DFE≌△FCG 得EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题;
详解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.
∵CD=2AD,DF=FC,
∴CF=CB,
∴∠CFB=∠CBF,
∵CD∥AB,
∴∠CFB=∠FBH,
∴∠CBF=∠FBH,
∴∠ABC=2∠ABF.故①正确,
∵DE∥CG,
∴∠D=∠FCG,
∵DF=FC,∠DFE=∠CFG,
∴△DFE≌△FCG,
∴FE=FG,
∵BE⊥AD,
∴∠AEB=90°,
∵AD∥BC,
∴∠AEB=∠EBG=90°,
∴BF=EF=FG,故②正确,
∵S△DFE=S△CFG,
∴S四边形DEBC=S△EBG=2S△BEF,故③正确,
∵AH=HB,DF=CF,AB=CD,
∴CF=BH,∵CF∥BH,
∴四边形BCFH是平行四边形,
∵CF=BC,
∴四边形BCFH是菱形,
∴∠BFC=∠BFH,
∵FE=FB,FH∥AD,BE⊥AD,
∴FH⊥BE,
∴∠BFH=∠EFH=∠DEF,
∴∠EFC=3∠DEF,故④正确,
故选D.
点睛:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.
7、C
【解析】
首先确定k,k>0,必过第二、四象限,再确定b,看与y轴交点,即可得到答案.
【详解】
∵y=-2x+3中,k=-2<0,
∴必过第二、四象限,
∵b=3,
∴交y轴于正半轴.
∴过第一、二、四象限,不过第三象限,
故选:C.
此题主要考查了一次函数的性质,直线所过象限,受k,b的影响.
8、A
【解析】
根据分式方程有增根可求出x=3,去分母后将x=3代入求解即可.
【详解】
∵方程有增根,
∴x=3,
去分母,得
x+4=m+2(x-3),
把x=3代入,得
3+4=m,
∴m=7.
故选A.
本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y(3x﹣1)1.
【解析】
首先提公因式y,再利用完全平方公式进行二次分解.
【详解】
解:原式=y(9x1﹣6x+1)=y(3x﹣1)1,
故答案为:y(3x﹣1)1.
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
10、(无需写成一般式)
【解析】
根据AD=xm,就可以得出AB=38-x,由矩形的面积公式结合矩形是“优美矩形”就可以得出关于x的方程.
【详解】
∵AD=xm,且AB大于AD,
∴AB=38-x,
∵矩形ABCD是“优美矩形”,
∴
整理得:.
故答案为:.
考查了根据实际问题列一元二次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.
11、如果,那么
【解析】
根据否命题的定义,写出否命题即可.
【详解】
如果,那么
故答案为:如果,那么.
本题考查了否命题的问题,掌握否命题的定义以及性质是解题的关键.
12、-1
【解析】
根据根与系数的关系可得出,,将其代入中即可得出结论.
【详解】
∵、是方程的两个实数根,
∴,,
∴.
故答案为:-1.
本题考查了根与系数的关系,牢记“两根之和等于,两根之积等于”是解题的关键.
13、-2
【解析】
方程(m-2)x|m|+2x-1=0是一元二次方程,可得且m-2≠0,解得m=-2.
三、解答题(本大题共5个小题,共48分)
14、(1)12;(2)72°;(3)2;(1)小明的计算不正确,2.1.
【解析】
(1)根据植树2株的人数及其所占的百分比计算出总人数,然后分别减去植树1株,2株,1株,5株的人数即可得到植树3株的人数;
(2)用360°乘以植树1株的人数所占的百分比即可得;
(3)根据中位数的定义可先计算植树的总人数,然后写出即可;
(1)根据平均数的定义判断计算即可.
【详解】
解:(1)植树3株的人数为:20÷10%﹣10﹣20﹣6﹣2=12;
(2)扇形统计图中植树为1株的扇形圆心角的度数为:360°×=72°;
(3)植树的总人数为:20÷10%=50,
∴该班同学植树株数的中位数是2;
(1)小明的计算不正确,
正确的计算为: =2.1.
本题主要考查了扇形统计图和条形统计图、平均数、中位数的知识,根据题意读懂图形并正确计算是解题的关键.
15、(1);(2)点坐标为(2,9)或(6,-7);(3)存在点Q()使得四边形OFQC的面积最大,见解析.
【解析】
(1)先由点在直线上求出点的坐标,再利用待定系数法求解可得;
(2)可设出点坐标,则可表示出、的坐标,从而可表示出和的长,由条件可知到关于点坐标的方程,则可求得点坐标;
(3)作轴于点,设,,知,,,根据四边形的面积建立关于的函数,再利用二次函数的性质求解可得.
【详解】
解:(1)点在直线上,
,,
把、、三点坐标代入抛物线解析式可得,解得,
抛物线解析式为;
(2)设,则,,
则,,
,
,
当时,解得或,但当时,与重合不合题意,舍去,
;
当时,解得或,但当时,与重合不合题意,舍去,
;
综上可知点坐标为或;
(3)存在这样的点,使得四边形的面积最大.
如图,过点作轴于点,
设,,
则,,,
四边形的面积
,
当时,四边形的面积取得最大值,最大值为,此时点的坐标为,.
本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及利用割补法列出四边形面积的函数关系式.
16、(1)y=-4x-2;(2)2
【解析】
(1)利用正比例函数的定义设y-2=k(x+1),然后把已知的对应值代入求出k得到y与x之间的函数关系式;
(2)利用(1)中的函数解析式,计算自变量为-3时对应的函数值即可.
【详解】
解:(1)设y-2=k(x+1),
∵x=-2 y=1,
∴1-2=k•(-2+1),解得k=-4
∴y=-4x-2;
(2)由(1)知 y=-4x-2,
∴当x=-3时,y==2.
本题考查了用待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.
17、(1);(2);(3)证明见解析.
【解析】
(1)令,根据材料中的解题过程和完全平方公式因式分解即可;
(2)令,根据材料中的解题过程和完全平方公式因式分解即可;
(3)根据多项式乘多项式法则和完全平方公式因式分解,即可得出结论.
【详解】
解:(1)令,
则
所以.
(2)令,
则
,
所以.
(3)
.
∵是正整数,
∴也为正整数.
∴式子的值一定是某一个整数的平方.
此题考查的是因式分解,掌握利用“整体思想”和完全平方公式因式分解是解决此题的关键.
18、AB=5 周长20 面积24
【解析】根据菱形的对角线互相垂直平分的性质,运用勾股定理即可求得菱形的边长,从而得到
菱形的周长,再根据菱形的面积等于对角线乘积的一半即可计算出菱形的面积。
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据乘车费用=起步价+超过3千米的付费得出.
【详解】
解:依题意有:y=10+2(x-3)=2x+1.
故答案为:y=2x+1.
根据题意,找到所求量的等量关系是解决问题的关键.本题乘车费用=起步价+超过3千米的付费
20、(2,3)
【解析】
一个点关于x轴的对称点横坐标不变,纵坐标变为相反数.
【详解】
在平面直角坐标系xOy中,点A(2,-3)关于x轴对称的点B的坐标是(2,3),所以答案是(2,3).
本题主要考查了关于x轴对称的点的特征,熟练掌握相关知识是解答本题的关键.
21、±1.
【解析】
过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.
【详解】
解:因为△AOM的面积是3,
所以|k|=2×3=1.
所以k=±1.
故答案为:±1.
主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,这里体现了数形结合的思想,正确理解k的几何意义是关键.
22、
【解析】
因为AP⊥BP,则P点在AB为直径的半圆上,当P点为AB的中点E与D点连线与半圆AB的交点时,DP最短,求出此时PC的长度便可.
【详解】
解:以AB为直径作半圆O,连接OD,与半圆O交于点P′,当点P与P′重合时,DP最短,
则AO=OP′=OB=AB=2,
∵AD=2,∠BAD=90°,
∴OD=2,∠ADC=∠AOD=∠ODC=45°,
∴DP′=OD-OP′=2-2,
过P′作P′E⊥CD于点E,则
P′E=DE=DP′=2-,
∴CE=CD-DE=+2,
∴CP′==.
故答案为.
本题是一个矩形的综合题,主要考查了矩形的性质,勾股定理,圆的性质,关键是作辅助圆和构造直角三角形.
23、1
【解析】
原式=2(m2+2mn+n2)-6,
=2(m+n)2-6,
=2×9-6,
=1.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)详见解析
【解析】
(1)根据要求作出点M即可.
(2)首先证明四边形EBCA 是平行四边形,再利用平行四边形的性质解决问题即可.
【详解】
解:(1)使用直尺和圆规,补全图形 (保留作图痕迹);
(2)完成下面的证明.
证明:连接AC,EB.
∵四边形ABCD 是平行四边形,
∴AE∥BC.
∵AE= BC ,
∴四边形EBCA 是平行四边形(一组对边平行且相等的四边形是平行四边形 )(填推理的依据) .
∴AM =MB (平行四边形的对角线互相平分 )(填推理的依据) .
∴点M 为所求作的边AB的中点.
故答案为(1)详见解析;(2)详见解析.
本题考查作图-复杂作图,平行四边形的判定和性质,解题的关键是掌握平行四边形的判定和性质.
25、(1)5π;(2)这个游戏不公平,见解析;修改得分规则:飞镖停落在A、B区域雨薇得5分,飞镖停落在C区域方冉得4分,这样游戏就公平了.
【解析】
(1)从面积比得到概率;(2)通过概率大小进行判定,只要概率相等就公平.
【详解】
(1)SA=π•12=π,SB=π•22-π•12=3π,SC=π•32-π•22=5π;
(2)P(A)=,P(B)=,P(C)=
P(雨薇得分)=×1+×1=,P(方冉得分)=×1=
∵P(雨薇得分)≠P(方冉得分)
∴这个游戏不公平.
修改得分规则:飞镖停落在A、B区域雨薇得5分,飞镖停落在C区域方冉得4分,这样游戏就公平了.
考核知识点:求几何概率.理解概率意义和公式是关键.
26、 (1),;(2)当小明购物金额少于150元时,去乙超市合算,等于150元时去两家超市一样,多于150元时去甲超市合算.
【解析】
(1)根据题意得到和,即可得到答案;
(2)分由、、进行分析比较即可得到答案.
【详解】
(1)由得,
由得,
∴与的函数关系式,
(2)由得
由得
由得
∴当小明购物金额少于150元时,去乙超市合算,等于150元时去两家超市一样,多于150元时去甲超市合算.
本题考查一元一次方程的应用,解题的关键是读懂题意,等到函数关系.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份湖南省株洲市荷塘区2023-2024学年九年级数学第一学期期末综合测试试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份湖南省株洲市荷塘区2023-2024学年数学九年级第一学期期末调研试题含答案,共7页。试卷主要包含了点P关于原点的对称点的坐标为,已知反比例函数的图象经过点等内容,欢迎下载使用。
这是一份湖南省株洲市荷塘区2023-2024学年八年级数学第一学期期末调研试题含答案,共7页。试卷主要包含了已知二元一次方程组,则a的值是,已知A等内容,欢迎下载使用。