终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024年嘉兴市重点中学数学九年级第一学期开学统考试题【含答案】

    立即下载
    加入资料篮
    2024年嘉兴市重点中学数学九年级第一学期开学统考试题【含答案】第1页
    2024年嘉兴市重点中学数学九年级第一学期开学统考试题【含答案】第2页
    2024年嘉兴市重点中学数学九年级第一学期开学统考试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年嘉兴市重点中学数学九年级第一学期开学统考试题【含答案】

    展开

    这是一份2024年嘉兴市重点中学数学九年级第一学期开学统考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,1.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )
    A.平均数不变,方差不变B.平均数不变,方差变大
    C.平均数不变,方差变小D.平均数变小,方差不变
    2、(4分)如图,平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中有平行四边形( )
    A.4个B.5个C.8个D.9个
    3、(4分)如图,分别是的边上的点,将四边形沿翻折,得到交于点则的周长为( )
    A.B.C.D.
    4、(4分)如图,四边形ABCD是边长为5cm的菱形,其中对角线BD与AC交于点O,BD=6cm,则对角线AC的长度是( )
    A.8cmB.4cmC.3cmD.6cm
    5、(4分)若x<y,则下列结论不一定成立的是( )
    A.x﹣3<y﹣3B.﹣5x>﹣5yC.﹣D.x2<y2
    6、(4分)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为( )
    A.16B.19C.22D.25
    7、(4分)如图,以正方形的顶点为直角顶点,作等腰直角三角形,连接、,当、、三点在--条直线上时,若,,则正方形的面积是( )
    A.B.C.D.
    8、(4分)如图,在平面直角坐标系中,,,,…都是等腰直角三角形,其直角顶点,,,…均在直线上.设,,,…的面积分别为,,,…,根据图形所反映的规律,( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若式子有意义,则x的取值范围是_____.
    10、(4分)如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1_____S2;(填“>”或“<”或“=”)
    11、(4分)将一副三角尺如图所示叠放在一起,若AB=8cm,则阴影部分的面积是_____cm1.
    12、(4分)已知函数,则自变量x的取值范围是___________________.
    13、(4分)直角三角形的一条直角边长是另一条直角边长的2倍,斜边长是10,则较短的直角边的长为___________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,点E在正方形ABCD内,且∠AEB=90°,AB=10,BE=8,求阴影部分的面积.
    15、(8分)如图,在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8cm,r=1.6cm,请利用因式分解求出剩余阴影部分的面积(结果保留π)
    16、(8分)已知函数,
    (1)在平面直角坐标系中画出函数图象;
    (2)函数图象与轴交于点,与轴交于点,已知是图象上一个动点,若的面积为,求点坐标;
    (3)已知直线与该函数图象有两个交点,求的取值范围.
    17、(10分)如图,在“飞镖形”中,、、、分别是、、、的中点.
    (1)求证:四边形是平行四边形;
    (2)若,那么四边形是什么四边形?
    18、(10分)已知直线y=kx+b(k≠0)过点(1,2)
    (1)填空:b= (用含k代数式表示);
    (2)将此直线向下平移2个单位,设平移后的直线交x于点A,交y于点B,x轴上另有点C(1+k,0),使得△ABC的面积为2,求k值;
    (3)当1≤x≤3,函数值y总大于零,求k取值范围.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在平行四边形中,AD=2AB,平分交于点E,且,则平行四边形的周长是____.
    20、(4分)关于x的不等式组的解集为1<x<3,则a的值为____.
    21、(4分)对甲、乙、丙三名射击手进行20次测试,平均成绩都是8.5环,方差分别是0.4,3.2,1.6,在这三名射击手中成绩比较稳定的是_________________.
    22、(4分)在□ABCD中,∠A+∠C=80°,则∠B的度数等于_____________.
    23、(4分)如图,▱ABCD中,,,垂足为点若,则的度数为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)问题背景
    如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.
    类比探究
    如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)
    (1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.
    (2)△DEF是否为正三角形?请说明理由.
    (3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.
    25、(10分)如图,在矩形中,对角线、相交于点.若,,求的长.
    26、(12分)如图,在平面直角坐标系中,是原点,的顶点、的坐标分别为、,反比例函数的图像经过点.
    (1)求点的坐标;
    (2)求的值.
    (3)将沿轴翻折,点落在点处.判断点是否落在反比例函数的图像上,请通过计算说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    解: =(160+165+170+163+1)÷5=165,S2原=, =(160+165+170+163+1+165)÷6=165,S2新=,平均数不变,方差变小,故选C.
    2、D
    【解析】
    首先根据已知条件找出图中的平行线段,然后根据两组对边分别平行的四边形是平行四边形,来判断图中平行四边形的个数.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,CD∥AB,
    又∵EF∥BC,GH∥AB,
    ∴∴AB∥GH∥CD,AD∥EF∥BC,
    ∴平行四边形有:□ ABCD,□ABHG,□CDGH,□BCFE,□ADFE,□AGOE,□BEOH,□OFCH,□OGDF,共9个.即共有9个平行四边形.
    故选D.
    本题考查平行四边形的判定与性质,解题的关键是根据已知条件找出图中的平行线段.
    3、C
    【解析】
    根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的性质得到∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠AEG=∠EGF,
    ∵将四边形EFCD沿EF翻折,得到EFC′D′,
    ∴∠GEF=∠DEF=60°,
    ∴∠AEG=60°,
    ∴∠EGF=60°,
    ∴△EGF是等边三角形,
    ∴EG=FG=EF=4,
    ∴△GEF的周长=4×3=12,
    故选:C.
    本题考查了翻折变换的性质、平行四边形的性质、等边三角形的判定与性质等知识;熟练掌握翻折变换的性质是解决问题的关键.
    4、A
    【解析】
    首先根据菱形的性质可得BO=DO,AC⊥DB,AO=CO,然后再根据勾股定理计算出AO长,进而得到答案.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴BO=DO,AC⊥DB,AO=CO,
    ∵BD=6cm,
    ∴BO=3cm,
    ∵AB=5cm,
    ∴AO==4(cm),
    ∴AC=2AO=8cm.
    故选:A.
    本题考查菱形的性质,要注意菱形的对角线互相垂直,有直角即可用勾股定理求某些边的长.
    5、D
    【解析】
    根据不等式的性质分析判断即可.
    【详解】
    解:A、不等式x<y的两边同时减去3,不等式仍成立,即x﹣3<y﹣3,故本选项错误;
    B、不等式x<y的两边同时乘以﹣5,不等号方向改变.即:﹣5x>﹣5y,故本选项错误;
    C、不等式x<y的两边同时乘以﹣,不等号方向改变.即:﹣x>﹣y,故本选项错误;
    D、不等式x<y的两边没有同时乘以相同的式子,故本选项正确.
    故选:D.
    考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.
    6、C
    【解析】
    首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.
    【详解】
    解:∵四边形ABCD为矩形,
    ∴B′C=BC=AD,∠B′=∠B=∠D=90°
    ∵∠B′EC=∠DEA,
    在△AED和△CEB′中,

    ∴△AED≌△CEB′(AAS);
    ∴EA=EC,
    ∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,
    =AD+DE+EC+EA+EB′+B′C,
    =AD+DC+AB′+B′C,
    =3+8+8+3,
    =22,
    故选:C.
    本题主要考查了图形的折叠问题,全等三角形的判定和性质,及矩形的性质.熟记翻折前后两个图形能够重合找出相等的角是解题的关键.
    7、C
    【解析】
    由“ASA”可证△ABF≌△CBE,可得AF=CE=3,由等腰直角三角形的性质可得BH=FH=1,由勾股定理可求BC2=5,即可求正方形ABCD的面积
    【详解】
    解:∵四边形ABCD是正方形,△BEF是等腰直角三角形
    ∴AB=BC,BE=BF,∠ABC=∠EBF=90°,
    ∴∠ABF=∠EBC,且AB=BC,BE=BF
    ∴△ABF≌△CBE(SAS)
    ∴AF=CE=3
    如图,过点BH⊥EC于H,
    ∵BE=BF=,BH⊥EC
    ∴BH=FH=1
    ∴CH=EC-EH=2
    ∵BC2=BH2+CH2=5,
    ∴正方形ABCD的面积=5.
    故选择:C.
    本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,证明△ABF≌△CBE是本题的关键.
    8、A
    【解析】
    分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.
    【详解】
    解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,
    ∵P1(3,3),且△P1OA1是等腰直角三角形,
    ∴OC=CA1=P1C=3,
    设A1D=a,则P2D=a,
    ∴OD=6+a,
    ∴点P2坐标为(6+a,a),
    将点P2坐标代入,得:,
    解得:
    ∴A1A2=2a=3,,
    同理求得,
    故选:A
    本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、x≥﹣2且x≠1.
    【解析】
    由知,
    ∴,
    又∵在分母上,
    ∴.故答案为且.
    10、=
    【解析】
    利用矩形的性质可得△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,进而求出答案.
    【详解】
    解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,
    ∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,
    ∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,
    ∴S1=S1.
    故答案为:=.
    本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.
    11、2
    【解析】
    根据含30度角的直角三角形的性质求出AC的长,然后证明∠AFC=45°,得到CF的长,再利用三角形面积公式计算即可.
    【详解】
    解:∵∠B=30°,∠ACB=90°,∠E=90°,AB=2cm,
    ∴AC=4cm,BC∥ED,
    ∴∠AFC=∠D=45°,
    ∴AC=CF=4cm,
    ∴阴影部分的面积=×4×4=2(cm1),
    故答案为:2.
    本题考查了含30度角的直角三角形的性质,求出AC=CF=4cm是解答此题的关键.
    12、
    【解析】
    分析:根据函数的自变量取值范围的确定方法,从分式和二次根式有意义的条件列不等式求解即可.
    详解:由题意可得
    解得x≥-2且x≠3.
    故答案为:x≥-2且x≠3.
    点睛:此题主要考查了函数的自变量的取值范围,关键是明确函数的构成:二次根式的被开方数为非负数,分式的分母不等于0等条件.
    13、1
    【解析】
    根据边之间的关系,运用勾股定理,列方程解答即可.
    【详解】
    由题意可设两条直角边长分别为x,2x,
    由勾股定理得x2+(2x)2=(1)2,
    解得x1=1,x2=-1舍去),
    所以较短的直角边长为1.
    故答案为:1
    本题考查了一元二次方程和勾股定理的应用,解题的关键是根据勾股定理得到方程,转化为方程问题.
    三、解答题(本大题共5个小题,共48分)
    14、76
    【解析】
    由勾股定理先求出AE=6,然后求出正方形和直角三角形的面积,最后相减可得阴影部分的面积.
    【详解】
    ∵∠AEB=90°,AB=10,BE=8.
    ∴由勾股定理得, =,
    ∴,

    ∴.
    本题主要考查了勾股定理的应用,也考查了正方形和三角形的面积计算,比较基础.
    15、36πcm2
    【解析】
    用大圆的面积减去4个小圆的面积即可得到剩余阴影部分的面积,分解因式然后把R和r的值代入计算出对应的代数式的值.
    【详解】
    阴影部分面积=πR2-4πr2
    =π(R2-4r2)
    =π(R-2r)(R+2r)
    =π×﹙6.8+2×1.6﹚×﹙6.8-2×1.6﹚
    =36π(cm2).
    本题考查因式分解的运用,看清题意利用圆的面积计算公式列出代数式,进一步利用提取公因式法和平方差公式因式分解解决问题.
    16、(1)图略;(2)或;(3)的取值范围是或.
    【解析】
    (1)去绝对值,化为常见的一次函数,画出图像即可;
    (2)由的面积可先求出P点纵坐标y的值,再由函数解析式求出x值;
    (3)当直线介于经过点A的直线与平行于直线时,其与函数图像有两个交点.
    【详解】
    解: ,所以函数图像如图所示
    如图,作轴
    或1

    直线与轴的交点为
    ①当直线经过时,
    ②当直线平行于直线时,
    的取值范围是或
    本题考查了函数的图像,合理的将图像与一次函数相结合是解题的关键.
    17、 (1)见解析;(2)见解析.
    【解析】
    (1)连接AC,根据三角形的中位线的性质即可求解;
    (2)根据菱形的判定定理即可求解.
    【详解】
    (1)证明:连接.
    ∵、、、分别是、、、的中点,
    ∴、分别是、的中位线,
    ∴,,,,
    ∴,,
    ∴四边形是平行四边形.
    (2)解:四边形是菱形.理由如下:
    ∵,,,
    ∴,又由(1)可知四边形是平行四边形,
    ∴四边形是菱形.
    此题主要考查平行四边形的判定与性质,解题的关键是熟知菱形的判定定理与平行四边形的的判定与性质.
    18、(1)2﹣k;(2)k=±2;(3)当k>1或﹣1<k<1时,函数值y总大于1.
    【解析】
    (1)∵直线y=kx+b(k≠1)过点(1,2),
    ∴k+b=2,
    ∴b=2﹣k.
    故答案为2﹣k;
    (2)由(1)可得y=kx+2﹣k,
    向下平移2个单位所得直线的解析式为y=kx﹣k,
    令x=1,得y=﹣k,令y=1,得x=1,
    ∴A(1,1),B(1,﹣k),
    ∵C(1+k,1),
    ∴AC=|1+k﹣1|=|k|,
    ∴S△ABC=AC•|yB|=|k|•|﹣k|=k2,
    ∴k2=2,解得k=±2;
    (3)依题意,当自变量x在1≤x≤3变化时,函数值y的最小值大于1.
    分两种情况:
    ⅰ)当k>1时,y随x增大而增大,
    ∴当x=1时,y有最小值,最小值为k+2﹣k=2>1,
    ∴当 k>1时,函数值总大于1;
    ⅱ)当k<1时,y随x增大而减小,
    ∴当x=3时,y有最小值,最小值为3k+2﹣k=2k+2,
    由2k+2>1得k>﹣1,
    ∴﹣1<k<1.
    综上,当k>1或﹣1<k<1时,函数值y总大于1.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、18
    【解析】
    利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB,再求出ABCD的周长
    【详解】
    ∵CE平分∠BCD交AD边于点E,
    ∴.∠ECD=∠ECB
    ∵在平行四边形ABCD中、AD∥BC,AB=CD,AD=BC
    ∴∠DEC=∠ECB,
    ∴∠DEC=∠DCE
    ∴DE=DC
    ∵AD=2AB
    ∴AD=2CD
    ∴AE=DE=AB=3
    ∴AD=6
    ∴四边形ABCD的周长为:2×(3+6)=18.
    故答案为:18.
    此题考查平行四边形的性质,解题关键在于利用平行四边形的对边相等且互相平行
    20、4
    【解析】
    解:解不等式2x+1>3可得x>1,
    解不等式a-x>1,可得x<a-1,
    然后根据不等式组的解集为1<x<3,
    可知a-1=3,解得a=4.
    故答案为4.
    此题主要考查了不等式组的解,解题关键是根据不等式组的解集和求出不等式的解集的特点,求解即可.
    21、甲
    【解析】
    根据方差的意义即可得出结论.
    【详解】
    根据方差的定义,方差越小数据越稳定,因为=0.4,=3.2, =1.6,
    方差最小的为甲,所以本题中成绩比较稳定的是甲,
    故答案为甲.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    22、140°
    【解析】
    根据平行四边形的性质可得∠A的度数,再利用平行线的性质解答即可.
    【详解】
    解:如图,∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,
    ∵∠A+∠C=80°,∴∠A=40°,
    ∵AD∥BC,∴∠A+∠B=180°,∴∠B=140°.
    故答案为:140°.
    本题主要考查了平行四边形的性质和平行线的性质,属于应知应会题型,熟练掌握平行四边形的性质是解题关键.
    23、25°
    【解析】
    由等腰三角形性质得∠ACB=∠B=由平行四边形性质得∠DAE=∠ACB=65〬,由垂直定义得∠ADE=90〬-∠DAE=90〬-65〬.
    【详解】
    因为,,
    所以,∠ACB=∠B=
    因为,四边形ABCD是平行四边形,
    所以,AD∥BC,
    所以,∠DAE=∠ACB=65〬,
    又因为,,
    所以,∠ADE=90〬-∠DAE=90〬-65〬=25〬.
    故答案为25〬
    本题考核知识点:平行四边形,等腰三角形,垂直定义. 解题关键点:由所求推出必知,逐步解决问题.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1
    【解析】
    试题分析:(1)由正三角形的性质得∠CAB=∠ABC=∠BCA=60°,AB=BC,证出∠ABD=∠BCE,由ASA证明△ABD≌△BCE即可;、
    (1)由全等三角形的性质得出∠ADB=∠BEC=∠CFA,证出∠FDE=∠DEF=∠EFD,即可得出结论;
    (3)作AG⊥BD于G,由正三角形的性质得出∠ADG=60°,在RtΔADG中,DG=b,AG=b, 在RtΔABG中,由勾股定理即可得出结论.
    试题解析: (1)△ABD≌△BCE≌△CAF;理由如下:
    ∵△ABC是正三角形,
    ∴∠CAB=∠ABC=∠BCA=60°,AB=BC,
    ∵∠ABD=∠ABC﹣∠1,∠BCE=∠ACB﹣∠3,∠1=∠3,
    ∴∠ABD=∠BCE,
    在△ABD和△BCE中,

    ∴△ABD≌△BCE(ASA);
    (1)△DEF是正三角形;理由如下:
    ∵△ABD≌△BCE≌△CAF,
    ∴∠ADB=∠BEC=∠CFA,
    ∴∠FDE=∠DEF=∠EFD,
    ∴△DEF是正三角形;
    (3)作AG⊥BD于G,如图所示:
    ∵△DEF是正三角形,
    ∴∠ADG=60°,
    在Rt△ADG中,DG=b,AG=b,
    在Rt△ABG中,c1=(a+b)1+(b)1,
    ∴c1=a1+ab+b1.
    考点:1.全等三角形的判定与性质;1.勾股定理.
    25、
    【解析】
    首先根据矩形的性质可得,易证是等边三角形,即可得OA的长度,可得AC的长度.
    【详解】
    在矩形中,



    是等边三角形.


    本题考查了矩形的性质以及等边三角形的判定,掌握矩形的性质是解题的关键.
    26、 (1);(2);(3)点不落在反比例函数图像上.
    【解析】
    (1)根据平行四边形的性质,可得的坐标;(2)已知的坐标,可得的值;(3)根据图形全等和对称,可得坐标,代入反比例函数,可判断是否在图像上.
    【详解】
    解:(1)∵平行四边形,
    ∴,
    ∵的坐标为,
    ∴,
    ∵的坐标为,
    ∴点的坐标为;
    (2)把的坐标代入函数解析式得:,
    ∴.
    (3)点不落在反比例函数图像上;
    理由:根据题意得:的坐标为,
    当时,,
    ∴点不落在反比例函数图像上.
    本题综合考查平行四边形性质、反比例函数、图形翻折、全等等知识.
    题号





    总分
    得分

    相关试卷

    2024年合肥市寿春中学数学九年级第一学期开学统考试题【含答案】:

    这是一份2024年合肥市寿春中学数学九年级第一学期开学统考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年临沂市重点中学数学九上开学统考模拟试题【含答案】:

    这是一份2024-2025学年临沂市重点中学数学九上开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年莱芜市重点中学数学九年级第一学期开学统考模拟试题【含答案】:

    这是一份2024-2025学年莱芜市重点中学数学九年级第一学期开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map