![2024年江苏省东海晶都双语学校九年级数学第一学期开学达标测试试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16210210/0-1727781001153/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年江苏省东海晶都双语学校九年级数学第一学期开学达标测试试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16210210/0-1727781001194/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年江苏省东海晶都双语学校九年级数学第一学期开学达标测试试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16210210/0-1727781001234/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年江苏省东海晶都双语学校九年级数学第一学期开学达标测试试题【含答案】
展开
这是一份2024年江苏省东海晶都双语学校九年级数学第一学期开学达标测试试题【含答案】,共25页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若一次函数y=(k-3)x-k的图象经过第二、三、四象限,则k的取值范围是( )
A.k<3B.k<0C.k>3D.0<k<3
2、(4分)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:
则该二次函数图象的对称轴为( )
A.y轴B.直线x=C.直线x=1D.直线x=
3、(4分)如图,将□ABCD的一边BC延长至点E,若∠A=110°,则∠1等于( )
A.110°B.35°C.70°D.55°
4、(4分)如图,在△ABC中,AB=AC,∠A=36°,以点B为圆心,BC为半径作弧,交AC于点D,连接BD,则∠ABD的度数是( )
A.18°B.36°C.72°D.108°
5、(4分)如图,菱形中,于,交于F,于,若的周长为4,则菱形的面积为( ).
A.B.C.16D.
6、(4分)中,,则一定是( )
A.锐角三角形B.等腰三角形C.等边三角形D.等腰直角三角形
7、(4分)在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:
则在这次活动中,该班同学捐款金额的众数和中位数分别是( )
A.20元,30元B.20元,35元C.100元,35元D.100元,30元
8、(4分)已知一次函数y=kx+b随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)式子在实数范围内有意义,则x的取值范围是_____.
10、(4分)如图,以的两条直角边分别向外作等腰直角三角形.若斜边,则图中阴影部分的面积为_____.
11、(4分)已知一等腰三角形有两边长为,4,则这个三角形的周长为_______.
12、(4分)关于x的方程ax﹣2x﹣5=0(a≠2)的解是_____.
13、(4分)设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.
(1)求证:四边形ABCD是平行四边形
(2)若AC⊥BD,且AB=4,则四边形ABCD的周长为________.
15、(8分)如图,矩形OABC中,点A在x轴上,点C在y轴上,点B的坐标是,矩形OABC沿直线BD折叠,使得点C落在对角线OB上的点E处,折痕与OC交于点D.
(1)求直线OB的解析式及线段OE的长;
(2)求直线BD的解析式及点E的坐标;
(3)若点P是平面内任意一点,点M是直线BD上的一个动点,过点M作轴,垂足为点N,在点M的运动过程中是否存在以P、N、E、O为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.
16、(8分)某校共有1000名学生,为了了解他们的视力情况,随机抽查了部分学生的视力,并将调查的数据整理绘制成直方图和扇形图.
(1)这次共调查了多少名学生?扇形图中的、值分别是多少?
(2)补全频数分布直方图;
(3)在光线较暗的环境下学习的学生占对应被调查学生的比例如下表:
根据调查结果估计该校有多少学生在光线较暗的环境下学习?
17、(10分)如图,A,B是直线y=x+4与坐标轴的交点,直线y=-2x+b过点B,与x轴交于点C.
(1)求A,B,C三点的坐标;
(2)点D是折线A—B—C上一动点.
①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.
②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由
18、(10分)如图,在四边形ABCD中,∠ADC=90°,AB=AC,E,F分别为AC,BC的中点,连接EF,ED,FD.
(1)求证:ED=EF;
(2)若∠BAD=60°,AC平分∠BAD,AC=6,求DF的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知,四边形ABCD中,AB∥CD,AB=8,DC=4,点M、N分别为边AB、DC的中点,点P从点D出发,以每秒1个单位的速度从D→C方向运动,到达点C后停止运动,同时点Q从点B出发,以每秒3个单位的速度从B→A方向运动,到达点A后立即原路返回,点P到达点C后点Q同时停止运动,设点P、Q运动的时问为t秒,当以点M、N、P、Q为顶点的四边形为平行四边形时,t的值为________。
20、(4分)在菱形ABCD中,两条对角线AC与BD的和是1.菱形的边AB=5,则菱形ABCD的面积是_____.
21、(4分)如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2=_____时∠ACB=90°.
22、(4分)不等式2x-1>x解集是_________.
23、(4分)如图,菱形ABCD的周长为20,对角线AC与BC相交于点O,AC=8,则BD=________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知,,满足等式.
(1)求、、的值;
(2)判断以、、为边能否构成三角形?若能构成三角形,此三角形是什么形状的三角形?若不能,请说明理由;
25、(10分)某小区有一块四边形空地ABCD,如图所示,现计划在这块地上种植每平方米60元的草坪用以美化环境,施工人员测得(单位:米):AB=3,BC=4,CD=12,DA=13,∠B=90°,求小区种植这种草坪需多少钱?
26、(12分)如图,已知四边形ABCD是平行四边形,点E,F分别是AB,BC上的点,AE=CF,并且∠AED=∠CFD.
求证:(1)△AED≌△CFD;
(2)四边形ABCD是菱形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于k的一元一次不等式组,解之即可得出结论.
【详解】
∵一次函数y=(k-3)x-k的图象经过第二、三、四象限,
∴,
解得:0<k<3,
故选:D.
本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.
2、D
【解析】
观察表格可知:当x=0和x=3时,函数值相同,∴对称轴为直线x= .故选D.
3、C
【解析】
根据平行四边形的对角相等求出∠BCD的度数,再根据平角等于180°列式计算即可得解.
【详解】
∵四边形ABCD是平行四边形,
∴∠BCD=∠A=110°,
∴∠1=180°﹣∠BCD=180°﹣110°=70°,
故选C.
本题考查了平行四边形的对角相等的性质,是基础题,比较简单,熟记性质是解题的关键.
4、B
【解析】
由AB=AC,知道顶∠A的度数,就可以知道底∠C的度数,还知道BC=BD,就可以知道∠CDB的度数,在利用三角形的外角∠A+∠ABD=∠CDB,就可以求出ABD的度数
【详解】
解,∵AB=AC,∠A=36°,∴∠C=72°,又∵BC=BD,∴∠BDC=∠C=72°,
又∵∠A+∠ABD=∠BDC ∴∠ABD=∠BDC-∠A=72°-36°=36°
本题主要考查等腰三角形的性质,结合角度的关系进行求解
5、B
【解析】
由菱形的性质得到∠BCD=45°,推出△BFG与△BEC是等腰直角三角形,根据全等三角形的性质得到FG=FE,CG=CE,设BG=FG=EF=x,得到BF=x,根据△BFG的周长为4,列方程x+x+x=4,即可得到结论.
【详解】
∵菱形ABCD中,∠D=135°,
∴∠BCD=45°,
∵BE⊥CD于E,FG⊥BC于G,
∴△BFG与△BEC是等腰直角三角形,
∵∠GCF=∠ECF,∠CGF=∠CEF=90°,
CF=CF,
∴△CGF≌△CEF(AAS),
∴FG=FE,CG=CE,
设BG=FG=EF=x,
∴BF=x,
∵△BFG的周长为4,
∴x+x+x=4,
∴x=4-2,
∴BE=2,
∴BC=BE=4,
∴菱形ABCD的面积=4×2=8,
故选:B.
考查了菱形的性质,等腰三角形的性质,求FG的长是本题的关键.
6、B
【解析】
根据等腰三角形的判定方法,即可解答.
【详解】
根据在三角形中“等角对等边”,可知,选项B正确.
此题考查等腰三角形的判定,解题关键在于掌握判定定理.
7、A
【解析】
观察图表可得,捐款金额为20元的学生数最多为20人,所以众数为20元;已知共有50位同学捐款,可得第25位同学和26位同学捐款数的平均数为中位数,即中位数为=30元;故选A.
8、A
【解析】
先根据函数图像得出其经过的象限,由一次函数图像与系数的关系即可得出结论.
【详解】
因为y随着x的增大而减小,
可得:k
相关试卷
这是一份江苏省东海晶都双语学校2023-2024学年九上数学期末学业水平测试试题含答案,共7页。试卷主要包含了把二次函数配方后得等内容,欢迎下载使用。
这是一份江苏省东海晶都双语学校2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了如图,下列命题是真命题的个数是等内容,欢迎下载使用。
这是一份江苏省东海晶都双语学校2023-2024学年数学八年级第一学期期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)