2024年江苏省淮安市淮安区数学九年级第一学期开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列四个图形中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
2、(4分)已知一次函数,则该函数的图象是( )
A.B.
C.D.
3、(4分)下列图案中,不是中心对称图形的是( )
A.B.
C.D.
4、(4分)如图,一次函数,的图象与的图象相交于点,则方程组的解是()
A.B.C.D.
5、(4分)如图,将两个大小、形状完全相同的△ABC和△A'B'C'拼在一起,其中点A'与点A重合,点C'落在边AB上,连接B'C.若∠ACB=∠AC'B'=90°,AC=BC=3,则B'C的长为( )
A.3B.6C.3D.
6、(4分)图中的两个三角形是位似图形,它们的位似中心是( )
A.点PB.点D
C.点MD.点N
7、(4分)一元一次不等式组的解集在数轴上表示为( ).
A.B.
C.D.
8、(4分)如图,□ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为( )
A.8.3B.9.6C.12.6D.13.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某公司10月份生产了万件产品,要使12月份的产品产量达到万件,设平均每月增长的百分率是,则可列方程____.
10、(4分)写出一个轴对称图形但不是中心对称图形的四边形:__________________
11、(4分)如图所示,工人师傅做一个矩形铝合金窗框分下面三个步骤进行
先截出两对符合规格的铝合金窗料(如图①所示),使AB=CD,EF=GH.
(1)摆放成如图②的四边形,则这时窗框的形状是平行四边形,它的依据是 .
(2)将直尺紧靠窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④,说明窗框合格,这时窗框是矩形,它的依据是 .
12、(4分)如图,菱形ABCD中,点M、N分别在AD,BC上,且AM=CN,MN与AC交于点O,连接DO,若∠BAC=28°,则∠ODC=_____.
13、(4分)在1,2,3,这四个数中,任选两个数的积作为k的值,使反比例函数的图象在第二、四象限的概率是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,O为坐标原点,▱AOBC的顶点A、C的坐标分别为A(﹣2,0)、C(0,3),反比例函数的图象经过点B.
(1)求反比例函数的表达式;
(2)这个反比例函数的图象与一个一次函数的图象交于点B、D(m,1),根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.
15、(8分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b),与x轴交于A,B两点,
(1)求b,m的值;
(2)求△ABP的面积;
(3)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值.
16、(8分)在“国学经典”主题比赛活动中,甲、乙、丙三位同学的三项比赛成绩如下表(单位:分).
(1)若“国学知识”、“现场写作”“经典诵读”分别按30%,20%,50%的比例计入该同学的比赛得分,请分别计算甲、乙两位同学的得分;
(2)若甲同学的得分是80分,乙同学的得分是84分,则丙同学的得分是______分.
17、(10分)我市一水果销售公司,需将一批鲜桃运往某地,有汽车、火车、运输工具可供选择,两种运输工具的主要参考数据如下:
若这批水果在运输过程中(含装卸时间)的损耗为150元/时,设运输路程为x()千米,用汽车运输所需总费用为y1元,用火车运输所需总费用为y2元.
(1)分别求出y1、y2与x的关系式;
(2)那么你认为采用哪种运输工具比较好?
18、(10分)如图,在△ABC中,AB=AC,点,在边上,.求证:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)观察分析下列数据:0,,,-3,,,,…,根据数据排列的规律得到第10个数据应是__________.
20、(4分)如图,菱形ABCD的边长为8, ,点E、F分别为AO、AB的中点,则EF的长度为________.
21、(4分)已知:函数,,若,则__________(填“”或“”或 “”).
22、(4分)中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_______.
23、(4分)如图,在平行四边形中,=5,=7,平分∠交边于点,则线段的长度为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)解方程:
(1);
(2)甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.求甲、乙两公司各有多少人?
25、(10分)计算: (1)(+)(﹣)﹣(+3)2; (2).
26、(12分)如图1,在▱ABCD中,点O是对角线AC的中点,EF过点O与AD,BC分别相交于点E,F,GH过点O与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.
(1)求证:四边形EGFH是平行四边形;
(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有的平行四边形.(四边形AGHD除外)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故此选项错误;
B、不是轴对称图形,是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、既是轴对称图形,又是中心对称图形,故此选项正确.
故选D.
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
2、A
【解析】
根据函数系数结合一次函数图象与系数的关系,即可得出该函数图象过第一、二、四象限,此题得解.
【详解】
∵在一次函数y=-x+1中,k=-1<0,b=1>0,
∴一次函数y=-x+1的图象过第一、二、四象限.
故选:A.
本题考查了一次函数图象与系数的关系,熟练掌握当k<0、b>0时函数图象过第一、二、四象限是解题的关键.
3、D
【解析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;对于图A,分析可知,其绕着图形的圆心旋转180°后与原来的图形重合,故是中心对称图形,同理再分析其他选项即可.
【详解】
根据中心对称图形的概念可知,A、B、C都是中心对称图形,不符合题意;
D不是中心对称图形,符合题意.
故选:D.
本题考查了中心对称图形的判断,解题的关键是掌握中心对称图形定义;
4、A
【解析】
根据图象求出交点P的坐标,根据点P的坐标即可得出答案.
【详解】
解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(-2,3),
∴方程组的解是,
故选A.
本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.
5、A
【解析】
根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算即可.
【详解】
∵∠ACB=∠AC′B′=90°,AC=BC=3,
∴AB=,∠CAB=45°,
∵△ABC和△A′B′C′大小、形状完全相同,
∴∠C′AB′=∠CAB=45°,AB′=AB=3,
∴∠CAB′=90°,
∴B′C=,
故选A.
本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
6、A
【解析】
试题分析:根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.
解:∵位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,
因为点P在直线MN上,
所以点P为位似中心.
故选A.
考点:位似变换.
7、A
【解析】
根据不等式解集的表示方法即可判断.
【详解】
解:
解不等式①得:x>-1,
解不等式②得:x≤2,
∴不等式组的解集是-1<x≤2,
表示在数轴上,如图所示:
.
故选:A.
此题考查解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.
8、B
【解析】
解:根据平行四边形的中心对称性得:OF=OE=1.1.∵▱ABCD的周长=(4+1)×2=14
∴四边形BCEF的周长=×▱ABCD的周长+2.2=9.2.故选B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、100(1+x)2=121
【解析】
设平均每月增长的百分率是x,那么11月份的产品产量为100(1+x)万件,2月份的产品产量为100(1+x)(1+x),然后根据2月份的产品产量达到121万件即可列出方程,解方程即可.
【详解】
解:设平均每月增长的百分率是x,依题意得:
100(1+x)2=121
故答案为100(1+x)2=121
本题考查了利用一元二次方程解增长率问题.
10、等腰梯形(答案不唯一)
【解析】
根据轴对称图形和中心对称图形的概念,知符合条件的图形有等腰三角形,等腰梯形,角,射线,正五边形等.
【详解】
是轴对称图形但不是中心对称图形的,例如:等腰梯形,等腰三角形,角,射线,正五边形等.
故答案为:等腰梯形(答案不唯一).
此题主要考查了中心对称图形和轴对称图形,此题为开放性试题.注意:只要是有奇数条对称轴的图形一定不是中心对称图形.
11、【答题空1】两组对边分别相等的四边形是平行四边形
【答题空2】有一个角是直角的平行四边形是矩形
【解析】
(1)∵AB=CD,EF=GH,
∴四边形为平行四边形.(两组对边相等的四边形为平行四边形)
(2)由(2)知四边形为平行四边形,
∵∠C为直角,
∴四边形为矩形.(一个角为直角的平行四边形为矩形)
根据平行四边形的判定,两组对边分别相等的四边形为平行四边形,即可得出②的结论,当把一个角变为直角时,根据一个角为直角的平行四边形为矩形即可得出③的结论.
12、62°
【解析】
证明≌,根据全等三角形的性质得到AO=CO,根据菱形的性质有:AD=DC,根据等腰三角形三线合一的性质得到DO⊥AC,即∠DOC=90°.根据平行线的性质得到∠DCA=28°,根据三角形的内角和即可求解.
【详解】
四边形ABCD是菱形,
AD//BC,
在与中,
,
≌;
AO=CO,
AD=DC,
∴DO⊥AC,
∴∠DOC=90°.
∵AD∥BC,
∴∠BAC=∠DCA.
∵∠BAC=28°,∠BAC=∠DCA.,
∴∠DCA=28°,
∴∠ODC=90°-28°=62°.
故答案为62°
考查菱形的性质,等腰三角形的性质,平行线的性质,三角形的内角和定理等,比较基础,数形结合是解题的关键.
13、
【解析】
四个数任取两个有6种可能.要使图象在第四象限,则k<0,找出满足条件的个数,除以6即可得出概率.
【详解】
依题可得,任取两个数的积作为k的值的可能情况有6种(1,2)、(1,3)、(1,-4)、
(2,3)、(2,-4)、(3,-4),
要使反比例函数y=kx的图象在第二、四象限,则k<0,
这样的情况有3种即(1,-4)、(2,-4)、(3,-4),
故概率为:=.
本题考查反比例函数的选择,根据题意找出满足情况的数量即是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)y=;(2)当0<x<2或x>6时,反比例函数的值大于一次函数的值.
【解析】
(1)根据平行四边形的性质求得点B的坐标为(2,3),代入反比例函数的解析式即可求得k值,从而求得反比例函数的表达式;(2)先求得m的值,根据图象即可求解.
【详解】
(1)∵四边形ABCD是平行四边形,
∴OA=BC,OA∥BC,
而A(﹣2,0)、C(0,3),
∴B(2,3);
设所求反比例函数的表达式为y=(k≠0),
把B(2,3)代入得k=2×3=6,
∴反比例函数解析式为y=;
(2)把D(m,1)代入y=得m=6,则D(6,1),
∴当0<x<2或x>6时,反比例函数的值大于一次函数的值.
本题主要考查了反比例函数点的坐标与反比例函数解析式的关系及平行四边形的性质,关键是熟练掌握凡是反比例函数图象经过的点都能满足解析式.解决第(2)问时,利用了数形结合的数学思想.
15、(1)m=-1;(2);(3)a=或a=.
【解析】
(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)根据解析式求得A、B的坐标,然后根据三角形面积公式即可求得;(3)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.
【详解】
(1)把点P(1,b)代入y=2x+1,
得b=2+1=3,
把点P(1,3)代入y=mx+4,得m+4=3,
∴m=-1;
(2)∵L1:y=2x+1 L2:y=-x+4,
∴A(-,0)B(4,0)
∴;
(3)解:直线x=a与直线l1的交点C为(a,2a+1)
与直线l2的交点D为(a,-a+4).
∵CD=2,
∴|2a+1-(-a+4)|=2,
即|3 a-3|=2,
∴3 a-3=2或3 a-3=-2,
∴a=或a=.
本题考查两条直线相交或平行问题、一次函数图象上点的坐标特征以及三角形的面积,解题的关键是:(1)利用一次函数图象上点的坐标特征求出b、m的值;(2)根据解析式求得与坐标轴的交点;(3)根据CD=2,找出关于a的含绝对值符号的一元一次方程.
16、(1)甲:84.8分;乙:1.8分;(2)1.
【解析】
(1)根据加权平均数的定义即可求解;
(2)根据甲乙的分数求出写作的分值占比,再求出丙的分数即可.
【详解】
解:(1)甲:(分);
乙:(分).
答:甲、乙两位同学的得分分别是84.8、1.8分.
(2)∵甲得分80分,乙得分84分,
∴乙比甲多得4分,
∴现场写作的占比为,丙的现场写作比乙多5分,
∴丙的得分为(分).
故答案为:1.
此题主要考查加权平均数的求解与应用,解题的关键是熟知加权平均数的定义.
17、(1),;(2)当两地路程大于520千米时,采用火车运输较好;当两地路程等于520千米时,两种运输工具一样;当两地路程小于520千米时,采用汽车运输较好.
【解析】
(1)根据表格的信息结合等量关系即可写出关系式;
(2)根据题意列出不等式或等式进行求解,根据x的取值判断费用最少的情况.
【详解】
解:(1)设运输路程为x()千米,用汽车运输所需总费用为y1元,
用火车运输所需总费用为y2元.根据题意得
,
∴,
,
∴;
(2)当时,即,
∴;
当时,即,
∴;
当时,即,
∴.
∴当两地路程大于520千米时,采用火车运输较好;
当两地路程等于520千米时,两种运输工具一样;
当两地路程小于520千米时,采用汽车运输较好.
此题主要考查一次函数的应用,解题的关键是根据题意找到等量关系列出关系式.
18、见解析
【解析】
试题分析:证明△ABE≌△ACD 即可.
试题解析:法1:
∵AB=AC,
∴∠B=∠C,
∵AD=CE,
∴∠ADE=∠AED,
∴△ABE≌△ACD,
∴BE=CD ,
∴BD=CE,
法2:如图,作AF⊥BC于F,
∵AB=AC,
∴BF=CF,
∵AD=AE,
∴DF=EF,
∴BF-DF=CF-EF,
即BD=CE.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.
【详解】
解:由题意知道:题目中的数据可以整理为:,,…,
∴第13个答案为:.
故答案为:1.
此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.
20、2
【解析】
先根据菱形的性质得出∠ABO=∠ABC=30°,由30°的直角三角形的性质得出OA=AB=4,再根据勾股定理求出OB,然后证明EF为△AOB的中位线,根据三角形中位线定理即可得出结果
【详解】
∵四边形ABCD是菱形,
∴AC⊥BD,∠ABO=∠ABC=30°,
∴OA=AB=4,
∴OB= ,
∵点E、F分别为AO、AB的中点,
∴EF为△AOB的中位线,
∴EF=OB=2.
故答案是:2 .
考查了矩形的性质、勾股定理、含30°角的直角三角形的性质以及三角形中位线定理;根据勾股定理求出OB和证明三角形中位线是解决问题的关键.
21、<
【解析】
联立方程组,求出方程组的解,根据方程组的解以及函数的图象进行判断即可得解.
【详解】
根据题意联立方程组得,
解得,,
画函数图象得,
所以,当,则<.
故答案为:<.
本题考查了一次函数图象的性质与特征,求出两直线的交点坐标是解决此题的关键.
22、45°
【解析】
根据正多边形的外角度数等于外角和除以边数可得.
【详解】
∵硬币边缘镌刻的正多边形是正八边形,
∴它的外角的度数等于360÷8=45°.
故答案为45°.
本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.
23、1
【解析】
根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得DE的长度.
【详解】
∵四边形ABCD为平行四边形,
∴AE∥BC,AD=BC=7cm,
∴∠AEB=∠EBC,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,
∴AE=AB=5cm,
∴DE=AD-AE=7-5=1cm
故答案为:1.
本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.
二、解答题(本大题共3个小题,共30分)
24、(1),;(2)甲公司有1名员工,乙公司有25名员工.
【解析】
(1)直接用配方法解一元二次方程即可;
(2)设乙公司有x人,则甲公司有1.2x人,根据人均捐款钱数=捐款总钱数÷人数,结合乙公司比甲公司人均多捐20元,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
解:(1),
,;
(2)解:设乙公司有x人,则甲公司有1.2x人,
依题意,得:,
解得:x=25,
经检验,x=25是原分式方程的解,且符合题意,
∴1.2x=1.
答:甲公司有1名员工,乙公司有25名员工.
本题考查了解一元二次方程和分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
25、(1)-19-6; (2)3-.
【解析】
分析:(1)用平方差公式和完全平方公式计算;(2)把式子中的二次根式都化为最简二次根式后,再加减.
详解:(1)()(﹣)﹣(+3)2
=7-5-(3+6+18)
=-19-6;
(2)
=
=3-.
点睛:本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号,能够使乘法公式的尽量使用乘法公式.
26、(1)见解析;(2)▱GBCH、▱ABFE、▱EFCD、▱EGFH
【解析】
试题分析:根据ABCD为平行四边形得出AD∥BC,则∠EAO=∠FCO,根据OA=OC,∠AOE=∠COF得出△OAE和△OCF全等,从而得出OE=OF,同理得出OG=OH,从而说明平行四边形;根据平行四边形的性质得出面积相等的四边形
试题解析:(1)证明:∵四边形ABCD为平行四边形 ∴AD∥BC ∴∠EAO=∠FCO
∵OA=OC ∠AOE=∠COF ∴△OAE≌△OCF ∴OE=OF 同理OG=OH ∴四边形EGFH是平行四边形
(2)□ABFE、□GBCH、□EFCD、□EGFH
考点:平行四边形的性质和判定
题号
一
二
三
四
五
总分
得分
批阅人
国学知识
现场写作
经典诵读
甲
86
70
90
乙
86
80
90
丙
86
85
90
运输工具
途中平均速度(单位:千米/时)
途中平均费用(单位:元/千米)
装卸时间(单位:小时)
装卸费用(单位:元)
汽车
75
8
2
1000
火车
100
6
4
2000
2024-2025学年江苏省淮安市淮阴师范院附属中学数学九年级第一学期开学统考模拟试题【含答案】: 这是一份2024-2025学年江苏省淮安市淮阴师范院附属中学数学九年级第一学期开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省淮安市淮阴区九年级数学第一学期开学质量检测试题【含答案】: 这是一份2024-2025学年江苏省淮安市淮阴区九年级数学第一学期开学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省淮安市经济开发区2023-2024学年数学九年级第一学期期末统考模拟试题含答案: 这是一份江苏省淮安市经济开发区2023-2024学年数学九年级第一学期期末统考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,在平面直角坐标系中,点P,下列运算正确的是,抛物线的顶点坐标为等内容,欢迎下载使用。