2024年江苏省江阴市澄东片数学九上开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某射击运动员在一次射击训练中,共射击了次,所得成绩(单位:环)为、、、、、,这组数据的中位数为( )
A.B.C.D.
2、(4分)已知点(-4,y1),(2,y2)都在直线y=-3x+2上,则y1,y2 的大小关系是
A.y1>y2B.y1=y2C.y1
A.B.C.D.
4、(4分)点关于原点的对称点坐标是( )
A.B.C.D.
5、(4分)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交
AB于G,连接DG,现在有如下4个结论:①≌;②;③∠GDE=45°;④
DG=DE在以上4个结论中,正确的共有( )个
A.1个B.2 个C.3 个D.4个
6、(4分)如图,在四边形ABCD中,点D在AC的垂直平分线上,.若,则的度数是( )
A.B.C.D.50°
7、(4分)如图,在中,,点在上,,若,,则的长是( )
A.B.C.D.
8、(4分)如果不等式组的解集是,那么的取值范围是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分式方程有增根,则的值为__________。
10、(4分)在1,2,3,这四个数中,任选两个数的积作为k的值,使反比例函数的图象在第二、四象限的概率是________.
11、(4分)人数相同的八年级甲,乙两班同学在同一次数学单元测试中,班级平均分和方差如下:,,则成绩较为稳定的班级是_______.
12、(4分)某农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种甜玉米各用10块试验田进行实验,得到这两个品种甜玉米每公顷产量的两组数据(如图所示).根据图6中的信息,可知在试验田中,____种甜玉米的产量比较稳定.
13、(4分)如图是甲、乙两名射由运动员的10次射击训练成绩的折线统计图观察图形,比较甲、乙这10次射击成绩的方差、的大小:_____ (填“>”、“<”或“=”)
三、解答题(本大题共5个小题,共48分)
14、(12分)为了从甲、乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验两人在相同条件下各射靶次,命中的环数如下:
甲:,,,,,,,,,
乙:,,,,,,,,,
(1)分别计算两组数据的方差.
(2)如果你是教练你会选拔谁参加比赛?为什么?
15、(8分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.
(1)求证:△ADE≌△CBF;
(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.
16、(8分)某学校计划在总费用元的限额内,租用汽车送名学生和名教师集体参加校外实践活动,为确保安全,每辆汽车上至少要有名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.
(1)根据题干所提供的信息,确定共需租用多少辆汽车?
(2)请你给学校选择一种最节省费用的租车方案.
17、(10分)甲、乙两家文化用品商场平时以同样价格出售相同的商品.六一期间两家商场都让利酬宾,其中甲商场所有商品一律按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.
(1)分别写出两家商场购物金额(元)与商品原价(元)的函数解析式;
(2)在如图所示的直角坐标系中画出(1)中函数的图象;
(3)六一期间如何选择这两家商场购物更省钱?
18、(10分)如图,在平面直角坐标系中,直线与轴交于点,与双曲线在第二象限内交于点(-3,).
⑴求和的值;
⑵过点作直线平行轴交轴于点,连结AC,求△的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在Rt△ABC中,∠C=90°,若AB=17, 则正方形ADEC和BCFG的面积的和为________.
20、(4分)在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线 与此正方形的边有交点,则a的取值范围是________.
21、(4分)将一次函数y=3x﹣1的图象沿y轴向_____平移_____个单位后,得到的图象经过原点.
22、(4分)若关于x的不等式组的解集为﹣<x<﹣6,则m的值是_____.
23、(4分)如图,在平面直角坐标系中,已知的直角顶点在轴上,,反比例函数在第一象限的图像经过边上点和的中点,连接.若,则实数的值为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)有下列命题
①一组对边平行,一组对角相等的四边形是平行四边形.
②两组对角分别相等的四边形是平行四边形.
③一组对边相等,一组对角相等的四边形是平行四边形.
④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.
(1)上述四个命题中,是真命题的是 (填写序号);
(2)请选择一个真命题进行证明.(写出已知、求证,并完成证明)
已知: .
求证: .
证明:
25、(10分)(1)计算
(2)解方程
26、(12分)如图,在平面直角坐标系 中,函数的图象与直线交于点A(3,m).
(1)求k、m的值;
(2)已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数 的图象于点N.
①当n=1时,判断线段PM与PN的数量关系,并说明理由;
②若PN≥PM,结合函数的图象,直接写出n的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
先将题目中的数据按从小到大的顺序排列,然后根据中位数的定义分析即可.
【详解】
将题目中的数据按从小到大的顺序排列:6,7,7,8,8,9;中间数字为7和8;
中位数为
故选B
本题考查中位数的运算,注意要先将数据按从小到大的顺序排列,再根据中位数的定义分析求解.
2、A
【解析】
先求出y1,y1的值,再比较其大小即可.
【详解】
解:∵点(-4,y1),(1,y1)都在直线y=−3x+1上,
∴y1=11+1=14,y1=−6+1=−4,
∴y1>y1.
故选:A.
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
3、A
【解析】
根据平移的坐标变化规律,将A的横坐标+2即可得到A′的坐标.
【详解】
∵点A(1,2)向右平移2个单位得到对应点,
∴点的坐标为(1+2,2),即(3,2).
故选A.
本题考查图形的平移变换,在平面直角坐标系中,图形的平移与图形上某点的平移规律相同.
4、B
【解析】
坐标系中任意一点,关于原点的对称点是,即关于原点的对称点,横纵坐标都变成相反数.
【详解】
根据中心对称的性质,得点关于原点的对称点的坐标为.
故选B.
本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.
5、C
【解析】
【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE==45〫,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断④是错误的.
【详解】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,
∴∠DFG=∠A=90°,
∴△ADG≌△FDG,①正确;
∵正方形边长是12,
∴BE=EC=EF=6,
设AG=FG=x,则EG=x+6,BG=12﹣x,
由勾股定理得:EG2=BE2+BG2,
即:(x+6)2=62+(12﹣x)2,
解得:x=4
∴AG=GF=4,BG=8,BG=2AG,②正确;
∵△ADG≌△FDG,△DCE≌△DFE,
∴∠ADG=∠FDG,∠FDE=∠CDE
∴∠GDE==45〫.③正确;
BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④错误;
∴正确说法是①②③
故选:C
【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度.
6、A
【解析】
根据平行线的性质可得,再由线段垂直平分线的性质可得AD=CD,根据等腰三角形的性质可得,由三角形的内角和定理即可求得的度数.
【详解】
∵,
∴,
∵点D在AC的垂直平分线上,
∴AD=CD,
∴,
∴.
故选A.
本题考查了平行线的性质、线段垂直平分线的性质及等腰三角形的性质,正确求得是解决问题的关键.
7、C
【解析】
根据勾股定理求出斜边长,根据直角三角形的性质解答.
【详解】
在Rt△ABC中,∠ACB=90°,
∴AB==5,
∵∠ACB=90°,AD=BD,
∴CD=AB=,
故选C.
本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
8、B
【解析】
先用含有m的代数式把原不等式组的解集表示出来,由题意不等式的解集为x>1,再根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)来求出m的范围.
【详解】
解:在中
由(1)得,x>1
由(2)得,x>m
根据已知条件,不等式组解集是x>1
根据“同大取大”原则m≤1.
故选B.
本题考查一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求m的范围.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3
【解析】
方程两边都乘以最简公分母(x-1)(x+1)把分式方程化为整式方程,再根据分式方程的增根是使最简公分母等于0的未知数的值,求出增根,然后代入进行计算即可得解.
【详解】
解:∵分式方程有增根,
∴x-1=0,x+1=0,
∴x1=1,x1=-1.
两边同时乘以(x-1)(x+1),原方程可化为x(x+1)-(x-1)(x+1)=m,
整理得,m=x+1,
当x=1时,m=1+1=3,
当x=-1时,m=-1+1=0,
当m=0时,方程为=0,
此时1=0,
即方程无解,
∴m=3时,分式方程有增根,
故答案为:m=3.
本题考查对分式方程的增根,解一元一次方程等知识点的理解和掌握,理解分式方程的增根的意义是解题关键.
10、
【解析】
四个数任取两个有6种可能.要使图象在第四象限,则k<0,找出满足条件的个数,除以6即可得出概率.
【详解】
依题可得,任取两个数的积作为k的值的可能情况有6种(1,2)、(1,3)、(1,-4)、
(2,3)、(2,-4)、(3,-4),
要使反比例函数y=kx的图象在第二、四象限,则k<0,
这样的情况有3种即(1,-4)、(2,-4)、(3,-4),
故概率为:=.
本题考查反比例函数的选择,根据题意找出满足情况的数量即是解题关键.
11、甲
【解析】
根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
【详解】
∵,,
∴s甲2<s乙2,
∴甲班成绩较为稳定,
故答案为:甲.
本题考查方差的定义与意义:它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
12、乙
【解析】
试题分析:从图中看到,乙的波动比甲的波动小,故乙的产量稳定.故填乙.
考点:方差;折线统计图.
点评:本题要求了解方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
13、<
【解析】
利用折线统计图可判断乙运动员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.
【详解】
解:由折线统计图得乙运动员的成绩波动较大,
所以.
故答案为:<
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.
三、解答题(本大题共5个小题,共48分)
14、 (1) ,;(2) 选拔乙参加比赛.理由见解析.
【解析】
(1)先求出平均数,再根据方差的定义求解;
(2)比较甲、乙两人的成绩的方差作出判断.
【详解】
解:(1),
,
,
;
(2)因为甲、乙两名同学射击环数的平均数相同,乙同学射击的方差小于甲同学的方差,所以乙同学的成绩较稳定,应选乙参加比赛.
本题考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
15、(1)证明见解析;(2)若∠ADB是直角,则四边形BEDF是菱形,理由见解析.
【解析】
(1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;
(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BEDF是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,∠A=∠C,
∵E、F分别为边AB、CD的中点,
∴AE=AB,CF=CD,
∴AE=CF,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(SAS);
(2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:
解:由(1)可得BE=DF,
又∵AB∥CD,
∴BE∥DF,BE=DF,
∴四边形BEDF是平行四边形,
连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,
∴DF∥AE,DF=AE,
∴四边形AEFD是平行四边形,
∴EF∥AD,
∵∠ADB是直角,
∴AD⊥BD,
∴EF⊥BD,
又∵四边形BFDE是平行四边形,
∴四边形BFDE是菱形.
1、平行四边形的性质;2、全等三角形的判定与性质;3、菱形的判定
16、(1)确定共需租用6辆汽车;(2)最节省费用的租车方案是租用甲种客车辆,乙种客车辆.
【解析】
(1)首先根据总人数个车座确定租用的汽车数量,关键要注意每辆汽车上至少要有名教师.
(2)根据题意设租用甲种客车辆,共需费用元,则租用乙种客车辆,因此可列出方程,再利用不等式列出不等式组,即可解得x的范围,在分类计算费用,选择较便宜的.
【详解】
解:(1)由使名学生和名教师都有座位,租用汽车辆数必需不小于辆;每辆汽车上至少要有名教师,租用汽车辆数必需不大于6辆.
所以,根据题干所提供的信息,确定共需租用6辆汽车.
(2)设租用甲种客车辆,共需费用元,则租用乙种客车辆.
6辆汽车载客人数为人
=
∴
解得
∴,或
当时,甲种客车辆,乙种客车辆,
当时,甲种客车辆,乙种客车辆,
∴最节省费用的租车方案是租用甲种客车辆,乙种客车辆.
本题主要考查不等式组的应用问题,关键在于根据题意设出合理的未知数,特别注意,要取整数解,确定利润最小.
17、(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤200),y=0.7x+60(x>200);(2)详见解析;(3)详见解析.
【解析】
(1)根据题中描述的数量关系分别写出甲商场和乙商场中,y与x的函数关系即可(其中乙商场需分0≤x≤200和x>200两段分别讨论);(2)根据(1)中所得函数关系式按要求画出函数图象即可;(3)根据(1)中所得函数关系式分0.8x<0.7x+60、0.8x=0.7x+60、0.8x>0.7x+60三种情况进行解答即可得到相应的结论.
【详解】
解:(1)甲商场:y=0.8x,
乙商场:y=x(0≤x≤200),
y=0.7(x﹣200)+200=0.7x+60,
即y=0.7x+60(x>200);
(2)如图所示;
(3)①由0.8x<0.7x+60解得:x<600;
②由0.8x=0.7x+60解得:x=600;
③由0.8x>0.7x+60解得x>600,
∴当x=600时,甲、乙商场购物花钱相等;当x<600时,在甲商场购物更省钱;当x>600时,在乙商场购物更省钱.
本题考查了一次函数的应用,解决第(1)小题时,需注意乙商场中:y与x的函数关系式需分0≤x≤200和x>200两段分别讨论;解第(2)小题时,需分三种情况分别讨论,再作出相应的结论.
18、(1)a=2,b=1(2)3
【解析】
试题分析:(1)因为直线与双曲线交于点B,将B点坐标分别代入直线与双曲线的解析式,即可解得 与 的值.
(2)先利用直线BC平行于 轴确定C点坐标为 ,然后根据三角形面积公式计算三角形面积即可.
试题解析:(1)由两图象相交于点B,得
解得:a=2,b=1
(2)∵点B(-3,2), 直线∥轴,
∴C点坐标为 ,BC=3,
∴ S△ABC =.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、189
【解析】
【分析】小正方形的面积为AC的平方,大正方形的面积为BC的平方.两正方形面积的和为AC1+BC1,对于Rt△ABC,由勾股定理得AB1=AC1+BC1.AB长度已知,故可以求出两正方形面积的和.
【详解】正方形ADEC的面积为:AC1,
正方形BCFG的面积为:BC1;
在Rt△ABC中,AB1=AC1+BC1,AB=17,
则AC1+BC1=189,
故答案为:189.
【点睛】本题考查了勾股定理的应用,勾股定理应用的前提条件是在直角三角形中.
20、-1≤a≤
【解析】
根据题意得出C点的坐标(a-1,a-1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围.
【详解】
解:反比例函数经过点A和点C.
当反比例函数经过点A时,即=3,
解得:a=±(负根舍去);
当反比例函数经过点C时,即=3,
解得:a=1±(负根舍去),
则-1≤a≤.
故答案为: -1≤a≤.
本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=(k为常数,k≠0)的图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
21、上 1
【解析】
根据“上加下减”的平移规律解答即可.
【详解】
解:将一次函数y=3x-1的图象沿y轴向上平移1个单位后,得到的图象对应的函数关系式为y=3x-1+1,
即y=3x,该函数图象经过原点.
故答案为上,1.
此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意直线平移时k的值不变,只有b发生变化.解析式变化的规律是:左加右减,上加下减.
22、1
【解析】
先解不等式组得出其解集为,结合可得关于的方程,解之可得答案.
【详解】
解不等式,得:,
解不等式,得:,
∵不等式组的解集为,
∴,
解得,
故答案为:1.
本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
23、
【解析】
先根据含30°的直角三角形得出点B和点D的坐标,再根据△OAC面积为4和点C在反比例函数图象上得出k.
【详解】
在Rt△OAB中,∠B=30°,
∴可设OA=a,则AB=OA=a,
∴点B的坐标为(a,a),
∴直线OB的解析是为y=x
∵D是AB的中点
∴点D的坐标为(a,a)
∴k=a2
又∵S△OAC=4,
∴OA•yc=4,即•a•yc=4,
∴yc=
∴C(,)
∴k=•=
∴
∴a2=16,
∴k=a2=8.
故答案为8.
本题主要考查反比例函数的图象和性质,熟练运用30°直角三角形的性质与反比例函数k的几何意义是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)①②④(2)在四边形ABCD中,∠A=∠C,∠B=∠D;四边形ABCD是平行四边形
【解析】
(1)根据平行线的判定定理写出真命题;
(2)乙②为例,写出已知、求证.利用四边形的内角和和已知条件中的对角相等得到邻角互补,从而判定两组对边平行,进而证得结论.
【详解】
(1)①一组对边平行,一组对角相等的四边形是平行四边形.故正确;
②两组对角分别相等的四边形是平行四边形.故正确;
③一组对边相等,一组对角相等的四边形不一定是平行四边形.故错误;
④一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形.故正确.
故答案是:①②④;
(2)以②为例:
已知:在四边形ABCD中,∠A=∠C,∠B=∠D,
求证:四边形ABCD是平行四边形.
证明:∵∠1+∠2=180°﹣∠A,∠2+∠1=180°﹣∠C,∠A=∠C,
∴∠1+∠2=∠2+∠1.①
∵∠ABC=∠ADC,
即∠1+∠2=∠2+∠1,②
由①②相加、相减得:∠1=∠1,∠2=∠2.
∴AB∥CD,AD∥BC.
∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).
故答案是:在四边形ABCD中,∠A=∠C,∠B=∠D;四边形ABCD是平行四边形.
本题考查了平行四边形的判定,解题的关键是了解平行四边形的几个判定定理,难度不大.
25、(1)原式=;(2)x1=-1,x2=2.5;
【解析】
(1)根据负整数指数幂的意义与二次根式的性质分别化简得出答案;
(2)整理后直接利用公式法或十字相乘法解方程.
【详解】
解:(1)原式=
=
= ;
(2)
整理得:
(x+1)(2x-5)=0
∴ , .
故答案为:1)原式=;(2) , .
本题考查二次根式的混合运算和解一元二次方程,解题的关键是熟练运用一元二次方程的解法和二次根式的性质.
26、 (1) k的值为3,m的值为1;(2)0
分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.
(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;
②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.
详解:(1)将A(3,m)代入y=x-2,
∴m=3-2=1,
∴A(3,1),
将A(3,1)代入y=,
∴k=3×1=3,
m的值为1.
(2)①当n=1时,P(1,1),
令y=1,代入y=x-2,
x-2=1,
∴x=3,
∴M(3,1),
∴PM=2,
令x=1代入y=,
∴y=3,
∴N(1,3),
∴PN=2
∴PM=PN,
②P(n,n),
点P在直线y=x上,
过点P作平行于x轴的直线,交直线y=x-2于点M,
M(n+2,n),
∴PM=2,
∵PN≥PM,
即PN≥2,
∴0<n≤1或n≥3
点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.
题号
一
二
三
四
五
总分
得分
批阅人
2024年江苏省江阴市华士片、澄东片数学九上开学质量检测模拟试题【含答案】: 这是一份2024年江苏省江阴市华士片、澄东片数学九上开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省江阴市华士片、澄东片2023-2024学年数学九上期末教学质量检测模拟试题含答案: 这是一份江苏省江阴市华士片、澄东片2023-2024学年数学九上期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,如图,在中,,,于点,关于抛物线y=-3等内容,欢迎下载使用。
江苏省江阴市澄要片2023-2024学年数学八上期末调研试题含答案: 这是一份江苏省江阴市澄要片2023-2024学年数学八上期末调研试题含答案,共7页。试卷主要包含了已知不等式组的解集为,则的值为,下列说法不正确的是等内容,欢迎下载使用。