2024年江苏省江阴市初级中学九年级数学第一学期开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一个三角形的三边分别是3、4、5,则它的面积是( )
A.6B.12C.7.5D.10
2、(4分)在平面直角坐标系中,点P(-2,+1)所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
3、(4分)设a= ,b= ,c=,则a,b,c的大小关系是( )
A.b>c>a B.b>a>c C.c>a>b D.a>c>b
4、(4分)匀速地向如图所示容器内注水,最后将容器注满.在注水过程中,水面高度h随时间t变化情况的大致函数图象(图中OABC为一折线)是( )
A.(1)B.(2)C.(3)D.无法确定
5、(4分)如图,点D、E、F分别是△ABC的边AB、BC、CA的中点,连接DE、EF、FD得△DEF,如果△ABC的周长是24cm,那么△DEF的周长是( )
A.6cmB.12cmC.18cmD.48cm
6、(4分)如图,已知直线l1∥l2∥l3∥l4,相邻两条平行线间的距离都是1,正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积为()
A.B.5C.3D.
7、(4分)已知反比例函数y=,下列结论中,不正确的是( ).
A.图象必经过点(1,m).B.y随x的增大而减少.
C.当m>0时,图象在第一、三象限内.D.若y=2m,则x=.
8、(4分)如果1≤a≤,则+|a﹣1|的值是( )
A.1B.﹣1C.2a﹣3D.3﹣2a
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而_____.(填“增大”或“减小”)
10、(4分)如图,在平面直角坐标系中,矩形OABC的顶点A在y轴正半轴上,边AB、OA(AB>OA)的长分别是方程x−11x+24=0的两个根,D是AB上的一动点(不与A.B重合).AB=8,OA=3.若动点D满足△BOC与AOD相似,则直线OD的解析式为____.
11、(4分)如图中的虚线网格为菱形网格,每一个小菱形的面积均为1,网格中虚线的交点称为格点,顶点都在格点的多边形称为格点多边形,如:格点▱ABCD的面积是1.
(1)格点△PMN的面积是_____;
(2)格点四边形EFGH的面积是_____.
12、(4分)在平行四边形中,,若,,则的长是__________.
13、(4分)①_________;②_________;③_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,在△ABC中,AB=AC,点D是BC的中点,作∠EAB=∠BAD,AE边交CB的延长线于点E,延长AD到点F,使AF=AE,连结CF.
求证:BE=CF.
15、(8分)2017年5月14日——5月15日.“一带一路”国际合作高峰论坛在北京成功举办,高峰论坛期间及前夕,各国政府、地方、企业等达成一系列合作共识、重要举措及务实成果.中方对其中具有代表性的一些成果进行了梳理和汇总,形成高峰论坛成果清单.清单主要涵盖政策沟通、设施联通、贸易畅通、资金融通、民心相通5大类,共76大项、270多项具体成果.我市新能源产业受这一利好因素,某企业的利润逐月提高.据统计,2017年第一季度的利润为2000万元,第三季度的利润为2880万元.
(1)求该企业从第一季度到第三季度利润的平均增长率;
(2)若第四季度保持前两季度利润的平均增长率不变,该企业2017年的年利润总和能否突破1亿元?
16、(8分)如图,在平面直角坐标系中,直线与轴交于点,与双曲线在第二象限内交于点(-3,).
⑴求和的值;
⑵过点作直线平行轴交轴于点,连结AC,求△的面积.
17、(10分)如图,每个小正方形的边长都为1,四边形ABCD的顶点都在小正方形的顶点上.
(1)求四边形ABCD的面积;
(2)∠BCD是直角吗?说明理由.
18、(10分)如图,等腰△ABC中,已知AC=BC=2, AB=4,作∠ACB的外角平分线CF,点E从点B沿着射线BA以每秒2个单位的速度运动,过点E作BC的平行线交CF于点F.
(1)求证:四边形BCFE是平行四边形;
(2)当点E是边AB的中点时,连接AF,试判断四边形AECF的形状,并说明理由;
(3)设运动时间为t秒,是否存在t的值,使得以△EFC的其中两边为邻边所构造的平行四边形恰好是菱形?不存在的,试说明理由;存在的,请直接写出t的值.答:t=________.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)飞机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数表达式是s60t1.5t2,则飞机着陆后滑行直到停下来滑行了__________米.
20、(4分)如图,在R△ABC中,∠ABC=90°,AB=2,BC=1,BD是AC边上的中线,则BD= ________。
21、(4分)数据2,4,3,x,7,8,10的众数为3,则中位数是_____.
22、(4分)已知:线段AB,BC.
求作:平行四边形ABCD.
以下是甲、乙两同学的作业.
甲:
①以点C为圆心,AB长为半径作弧;
②以点A为圆心,BC长为半径作弧;
③两弧在BC上方交于点D,连接AD,CD.
四边形ABCD即为所求平行四边形.(如图1)
乙:
①连接AC,作线段AC的垂直平分线,交AC于点M;
②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD.
四边形ABCD即为所求平行四边形.(如图2)
老师说甲、乙同学的作图都正确,你更喜欢______的作法,他的作图依据是:______.
23、(4分)如图,点A,B在反比例函数(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,平行四边形中,点是与的交点,过点的直线与,的延长线分别交于点,.
(1)求证:;
(2)连接,,求证:四边形是平行四边形.
25、(10分)为改善生态环境,防止水土流失,某村计划在江汉堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:
设购买白杨树苗x棵,到两家林场购买所需费用分别为y甲(元)、y乙(元).
(1)该村需要购买1500棵白杨树苗,若都在甲林场购买所需费用为 元,若都在乙林场购买所需费用为 元;
(2)分别求出y甲、y乙与x之间的函数关系式;
(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?
26、(12分)已知关于x的一元二次方程x2﹣(n+3)x+3n=1.求证:此方程总有两个实数根.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由于32+42=52,易证此三角形是直角三角形,从而易求此三角形的面积.
【详解】
∵32+42=52,∴此三角形是直角三角形,
∴S△=×3×4=1.
故选:A.
本题考查了勾股定理的逆定理.解题的关键是先证明此三角形是直角三角形.
2、B
【解析】
∵-20,+10,
∴点P (-2,+1)在第二象限,
故选B.
3、B
【解析】
先把a、b化简,然后计算b-a,b-c,a-c的值即可得出结论.
【详解】
解:a==,b= ==.
由b-a==>0,∴b>a,由b-c==>0,∴b>c,∴b最大.
又∵a-c==>0,∴a>c,故b>a>c.
故选B.
本题考查了无理数比较大小以及二次根式的性质.化简a、b是解题的关键.
4、A
【解析】
根据题意和图形可以判断哪个函数图象符合实际,从而可以解答本题.
【详解】
解:由图形可得,
从开始到下面的圆柱注满这个过程中,h随时间t的变化比较快,
从最下面的圆柱注满到中间圆柱注满这个过程中,h随时间t的变化比较缓慢,
从中间圆柱注满到最上面的圆柱注满这个过程中,h随时间t的变化最快,
故(1)中函数图象符合题意,
故选:A.
本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
5、B
【解析】
利用三角形的中位线定理可以得到:DE=AC,EF=AB,DF=BC,则△DEF的周长是△ABC的周长的一半,据此即可求解.
【详解】
∵D、E分别是△ABC的边AB、BC的中点,
∴DE=AC,
同理,EF=AB,DF=BC,
∴C△DEF=DE+EF+DF=AC+BC+AB=(AC+BC+AB)=×24=12cm,
故选B.
本题考查了三角形的中位线定理,正确根据三角形中位线定理证得:△DEF的周长是△ABC的周长的一半是关键.
6、B
【解析】
过D点作直线EF与平行线垂直,与l2交于点E,与l4交于点F.易证△ADE≌△DFC,得CF=2,DF=2.根据勾股定理可求CD2得正方形的面积.
【详解】
作EF⊥l2,交l2于E点,交l4于F点.
∵l2∥l2∥l3∥l4,EF⊥l2,
∴EF⊥l2,EF⊥l4,
即∠AED=∠DFC=90°.
∵ABCD为正方形,
∴∠ADC=90°.
∴∠ADE+∠CDF=90°.
又∵∠ADE+∠DAE=90°,
∴∠CDF=∠DAE.
在△ADE和△DCF中
∴△ADE≌△DCF(AAS),
∴CF=DE=2.
∵DF=2,
∴CD2=22+22=3,
即正方形ABCD的面积为3.
故选B.
此题主要考查了正方形的性质和面积计算,根据平行线之间的距离构造全等的直角三角形是关键.
7、B
【解析】
根据反比例函数的性质对各项进行判断即可.
【详解】
A. 图象必经过点(1,m),正确;
B. 当时,在每一个象限内y随x的增大而减少,错误;
C. 当m>0时,图象在第一、三象限内,正确;
D. 若y=2m,则x=,正确;
故答案为:B.
本题考查了反比例函数的问题,掌握反比例函数的性质是解题的关键.
8、A
【解析】
直接利用a的取值范围进而化简二次根式以及绝对值得出答案.
【详解】
解:
=2﹣a+a﹣1
=1.
故选:A.
此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、减小
【解析】
【分析】根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.
【详解】∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),
∴0=k+3,
∴k=﹣3,
∴y的值随x的增大而减小,
故答案为减小.
【点睛】本题考查了一次函数的图象与性质,熟练掌握待定系数法以及一次函数的增减性与一次函数的比例系数k之间的关系是解题的关键.
10、y=−x
【解析】
分两种情况:△BOC∽△DOA和△BOC∽△ODA,由相似三角形的对应边成比例求得点D的坐标,由待定系数法求得直线OD的解析式;
【详解】
若△BOC∽△DOA.
则
即
所以AD= ,
若△BOC∽△ODA,可得AD=8(与题意不符,舍去)
设直线OD解析式为y=kx,则3=−k,
即k=− ,
直线OD的解析式为y=−x;
此题考查一次函数的性质,解题关键在于利用相似三角形的性质求解.
11、1 2
【解析】
解:(1)如图,S△PMN=•S平行四边形MNEF=×12=1.故答案为1.
(2)S四边形EFGH=S平行四边形LJKT﹣S△LEH﹣S△HTG﹣S△FKG﹣S△EFJ=10﹣2﹣9﹣1﹣15=2.故答案为2.
故答案为1,2.
点睛:本题考查了菱形的性质、平行四边形的性质等知识,解题的关键是学会用分割法求面积,属于中考常考题型.
12、10
【解析】
根据平行四边形对角线的性质可得BD=2BO,AO=3,继而根据勾股定理求出BO的长即可求得答案.
【详解】
∵四边形ABCD是平行四边形,
∴BD=2BO,AO==3,
∵AB⊥AC,
∴∠BAO=90°,
∴BO==5,
∴BD=10,
故答案为:10.
本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的对角线互相平分是解题的关键.
13、①, ②, ③.
【解析】
①根据二次根式的性质化简即可解答
②根据立方根的性质计算即可解答
③根据积的乘方,同底数幂的除法,进行计算即可解答
【详解】
①=
②=-3
③=4x =4x
此题考查二次根式的性质,同底数幂的除法,解题关键在于掌握运算法则
三、解答题(本大题共5个小题,共48分)
14、证明见解析.
【解析】
试题分析:根据等腰三角形的性质可得∠CAD=∠BAD,由等量关系可得∠CAD=∠EAB,有SAS可证△ACF≌△ABE,再根据全等三角形的对应边相等即可得证.
试题解析:证明:∵AB=AC,点D是BC的中点,∴∠CAD=∠BAD.
又∵∠EAB=∠BAD,∴∠CAD=∠EAB.
在△ACF和△ABE中,∵AC=AB,∠CAF=∠BAE,AF=AE,∴△ACF≌△ABE(SAS),∴BE=CF.
点睛:此题考查了等腰三角形的性质以及全等三角形的判定与性质.此题难度中等,注意掌握数形结合思想的应用.
15、(1)该企业从第一季度到第三季度利润的平均增长率为20%.(2)该企业2017年的年利润总和能突破1亿元.
【解析】
(1)设该企业从第一季度到第三季度利润的平均增长率为x,根据第一季度及第三季度的利润,即可得出关于x的一元二次方程,解之即可得出x的值,取其正值即可;
(2)根据平均增长率求出四个季度的利润和,与1亿元比较后即可得出结论.
【详解】
解:(1)设该企业从第一季度到第三季度利润的平均增长率为x,
根据题意得:2000(1+x)2=2880,
解得:x=0.2=20%或x=﹣2.2(不合题意,舍去).
答:该企业从第一季度到第三季度利润的平均增长率为20%;
(2)2000+2000×(1+20%)+2880+2880×(1+20%)=10736(万元),
10736万元>1亿元.
答:该企业2017年的年利润总和突破1亿元.
本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据平均增长率求出四个季度的利润和.
16、(1)a=2,b=1(2)3
【解析】
试题分析:(1)因为直线与双曲线交于点B,将B点坐标分别代入直线与双曲线的解析式,即可解得 与 的值.
(2)先利用直线BC平行于 轴确定C点坐标为 ,然后根据三角形面积公式计算三角形面积即可.
试题解析:(1)由两图象相交于点B,得
解得:a=2,b=1
(2)∵点B(-3,2), 直线∥轴,
∴C点坐标为 ,BC=3,
∴ S△ABC =.
17、(1)四边形ABCD的面积=14;(2)是.理由见解析.
【解析】
(1)根据四边形ABCD的面积=S矩形AEFH﹣S△AEB﹣S△BFC﹣S△CGD﹣S梯形AHGD即可得出结论;
(2)先根据锐角三角函数的定义判断出∠FBC=∠DCG,再根据直角三角形的性质可得出∠BCF+∠DCG=90°,故可得出结论.
【详解】
(1)
∵四边形ABCD的面积=S矩形AEFH﹣S△AEB﹣S△BFC﹣S△CGD﹣S梯形AHGD
=5×51×52×41×2(1+5)×1
=25
=14;
(2)是.理由如下:
∵tan∠FBC,tan∠DCG,∴∠FBC=∠DCG.
∵∠FBC+∠BCF=∠DCG+∠CDG=90°,∴∠BCF+∠DCG=90°,∴∠BCD是直角.
本题考查了分割法求面积和锐角三角函数的定义,熟知直角三角形的性质是解答此题的关键.
18、(1)见解析;(2)四边形AECF是矩形,理由见解析;(3)秒或5秒或2秒
【解析】
(1)已知EF∥BC,结合已知条件利用两组对边分别平行证明BCFE是平行四边形;因为AC=BC,等角对等边,得∠B=∠BAC,CF平分∠ACH,则∠ACF=∠FCH,结合∠ACH=∠B+∠BAC=∠ACF+∠FCH,等量代换得∠FCH=∠B,则同位角相等两直线平行,得BE∥CF,结合EF∥BC,证得四边形BCFE是平行四边形;
(2)先证∠AED=90°,再证四边形AECF是平行四边形,则四边形AECF是平行四边形是矩形; AC=BC,E是AB的中点,由等腰三角形三线合一定理知CE⊥AB,因为四边形BCFE是平行四边形,得CF=BE=AE,AE∥CF,一组对边平行且相等,且有一内角是直角,则四边形AECF是矩形;
(3)分三种情况进行①以EF和CF两边为邻边所构造的平行四边形恰好是菱形时,则邻边BE=BC,这时根据S=vt=2t=, 求出t即可;②以CE和CF两边为邻边所构造的平行四边形恰好是菱形时,过C作CD⊥AB于D,AC=BC,三线合一则BD的长可求,在Rt△BDC中运用勾股定理求出CD的长,把ED长用含t的代数式表示出来,现知EG=CF=EC=EB=2t,在Rt△EDC中,利用勾股定理列式即可求出t;③以CE和EF两边为邻边所构造的平行四边形恰好是菱形时,则CA=AF=BC,此时E与A重合,则2t=AB=4, 求得t值即可.
【详解】
(1)证明:如图1,∵AC=BC,
∴∠B=∠BAC,
∵CF平分∠ACH,
∴∠ACF=∠FCH,
∵∠ACH=∠B+∠BAC=∠ACF+∠FCH,
∴∠FCH=∠B,
∴BE∥CF,
∵EF∥BC,
∴四边形BCFE是平行四边形
(2)解:四边形AECF是矩形,理由是:
如图2,∵E是AB的中点,AC=BC,
∴CE⊥AB,
∴∠AEC=90°,
由(1)知:四边形BCFE是平行四边形,
∴CF=BE=AE,
∵AE∥CF,
∴四边形AECF是矩形
(3)秒或5秒或2秒
分三种情况:
①以EF和CF两边为邻边所构造的平行四边形恰好是菱形时,如图3,
∴BE=BC,即2t=2 ,
t= ;
②以CE和CF两边为邻边所构造的平行四边形恰好是菱形时,如图4,过C作CD⊥AB于D,
∵AC=BC,AB=4,
∴BD=2,
由勾股定理得:CD= = =6,
∵EG2=EC2 , 即(2t)2=62+(2t﹣2)2 ,
t=5;
③以CE和EF两边为邻边所构造的平行四边形恰好是菱形时,如图5,CA=AF=BC,此时E与A重合,
∴t=2,
综上,t的值为秒或5秒或2秒;
故答案为: 秒或5秒或2秒.
本题主要考查平行四边形,矩形,菱形等四边形的性质与证明,熟悉基本定理是解题基础,本题第三问的关键在于能够分情况讨论列出方程.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
将化为顶点式,即可求得s的最大值.
【详解】
解:,
则当时,取得最大值,此时,
故飞机着陆后滑行到停下来滑行的距离为:.
故答案为:1.
本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,会将二次函数的一般式化为顶点式,根据顶点式求函数的最值.
20、1.5
【解析】
利用勾股定理求出AC的长,再根据直角三角形斜边上的中线等于斜边的一半,就可求出BD的长.
【详解】
解:在Rt△ABC中,
AC=
∵ BD是AC边上的中线,
∴AC=2BD
∴BD=3÷2=1.5
故答案为:1.5
本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
21、1
【解析】
先根据众数是一组数据中出现次数最多的数据,求得x,再由中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
解:∵这组数据2,1,3,x,7,8,10的众数为3,
∴x=3,
从小到大排列此数据为:2,3,3,1,7,7,10,
处于中间位置的数是1,
∴这组数据的中位数是1;
故答案为:1.
本题主要考查数据统计中的众数和中位数的计算,关键在于根据题意求出未知数.
22、乙 对角线互相平分的四边形是平行四边形
【解析】
根据平行四边形的判定方法,即可解决问题.
【详解】
根据平行四边形的判定方法,我更喜欢乙的作法,他的作图依据是:对角线互相平分的四边形是平行四边形.
故答案为:乙;对角线互相平分的四边形是平行四边形.
本题主要考查尺规作图-复杂作图,平行四边形的判定定理,掌握尺规作线段的中垂线以及平行四边形的判定定理,是解题的关键.
23、
【解析】
试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.
∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,
∴S△ABC=2S△BCE,S△ABD=2S△ADE,
∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,
∴AC=2BD,
∴OD=2OC.
∵CD=k,
∴点A的坐标为(,3),点B的坐标为(-,-),
∴AC=3,BD=,
∴AB=2AC=6,AF=AC+BD=,
∴CD=k=.
【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k值是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)证明见解析;(2)证明见解析.
【解析】
(1)根据平行四边形的性质和全等三角形的证明方法证明即可;
(2)请连接、,由,得到,又,所以四边形是平行四边形.
【详解】
(1)四边形是平行四边形,
,.
.
在与中,
,
;
(2)如图,连接、,
由(1)可知,
,
,
四边形是平行四边形.
本题主要考查了全等三角形的性质与判定、平行四边形的性质,首先利用平行四边形的性质构造全等条件,然后利用全等三角形的性质解决问题.
25、(1)5900,6000;(2)见解析;(3)当0≤x≤1000或x=3000时,两家林场购买一样,当1000<x<3000时,到甲林场购买合算;当x>3000时,到乙林场购买合算.
【解析】
试题分析: (1)由单价×数量就可以得出购买树苗需要的费用;
(2)根据分段函数的表示法,甲林场分或两种情况 .乙林场分或两种情况.由由单价×数量就可以得出购买树苗需要的费用表示出甲、乙与之间的函数关系式;
(3)分类讨论,当,时,时,表示出甲、乙的关系式,就可以求出结论.
试题解析:(1)由题意,得.
甲=4×1000+3.8(1500﹣1000)=5900元,
乙=4×1500=6000元;
故答案为5900,6000;
(2)当时,
甲
时.
甲
∴甲(取整数).
当时,
乙
当时,
乙
∴乙(取整数).
(3)由题意,得
当时,两家林场单价一样,
∴到两家林场购买所需要的费用一样.
当时,甲林场有优惠而乙林场无优惠,
∴当时,到甲林场优惠;
当时,甲乙
当甲=乙时
解得:
∴当时,到两家林场购买的费用一样;
当甲<乙时,
时,到甲林场购买合算;
当甲>乙时,
解得:
∴当时,到乙林场购买合算.
综上所述,当或时,两家林场购买一样,
当时,到甲林场购买合算;
当时,到乙林场购买合算.
26、见解析.
【解析】
利用根的判别式△≥1时,进行计算即可
【详解】
△=,
所以,方程总有两个实数根.
此题考查根的判别式,掌握运算法则是解题关键
题号
一
二
三
四
五
总分
得分
批阅人
甲林场
乙林场
购树苗数量
销售单价
购树苗数量
销售单价
不超过1000棵时
4元/棵
不超过2000棵时
4元/棵
超过1000棵的部分
3.8元/棵
超过2000棵的部分
3.6元/棵
2024-2025学年江苏省泰兴市黄桥初级中学数学九年级第一学期开学教学质量检测试题【含答案】: 这是一份2024-2025学年江苏省泰兴市黄桥初级中学数学九年级第一学期开学教学质量检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省苏州实验初级中学数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年江苏省苏州实验初级中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省苏州实验初级中学数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年江苏省苏州实验初级中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。