2024年江苏省南京市鼓楼实验中学九上数学开学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列二次根式中,为最简二次根式的是( )
A.B.C.D.
2、(4分)如果直线y=kx+b经过一、三、四象限,那么直线y=bx+k经过第( )象限
A.一、二、三B.一、二、四C.一、三、四D.二、三、四
3、(4分)如果,那么yx的算术平方根是( )
A.2B.1C.-1D.±1
4、(4分)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于不等式x+1≥mx+n的解集是( )
A.x≥mB.x≥2C.x≥1D.x≥﹣1
5、(4分)下列平面图形中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
6、(4分)如图,已知函数y=ax+b和y=kx的图像交于点P,则根据图像可得关于x,y的二元一次方程组的解是( )
A.B.C.D.
7、(4分)已知点在第一象限,则下列关系式正确的是( )
A.B.C.D.
8、(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是( )
A.abc>0B.a+b=0C.2b+c>0D.4a+c<2b
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)菱形的两条对角线长分别为3和4,则菱形的面积是_____.
10、(4分)方程-x=1的根是______
11、(4分)当x=__________时,分式无意义.
12、(4分)已知反比例函数的图像经过点、,则k的值等于_____.
13、(4分)方程的根是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)小明骑单车上学,当他骑了一段路时起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:
(1)小明家到学校的路程是 米,本次上学途中,小明一共行驶了 米;
(2)小明在书店停留了 分钟,本次上学,小明一共用了 分钟;
(3)在整个上学的途中那个时间段小明骑车速度最快,最快的速度是多少?
15、(8分)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成的统计图(部分)如图所示.
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表
请根据调查的信息分析:
(1)活动启动之初学生“一周诗词诵背数量”的中位数为 ;
(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
16、(8分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)
17、(10分)计算下列各题
(1)
(2)
18、(10分)如图,已知分别是△的边上的点,若,,.
(1)请说明:△∽△;
(2)若,求的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)化简,=______ ;= ________ ;= ______.
20、(4分)已知一次函数y=kx+2的图象与x轴交点的横坐标为6,则当-3≤x≤3时,y的最大值是______.
21、(4分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x > k1x+b的解集为________________
22、(4分)若点A(x1,y1)和点B(x1+1,y2)都在一次函数y=2018x-2019的图象上,则y1_______y2(选择“>”、“<”或“=”填空).
23、(4分)计算: _____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)暑假期间,商洛剧院举行专场音乐会,成人票每张20元,学生票每张5元,为了吸引广大师生来听音乐会,剧院制定了两种优惠方案:
方案一:购买一张成人票赠送一张学生票;
方案二:成人票和学生票都打九折.
我校现有4名老师与若干名(不少于4人)学生听音乐会.
(1)设学生人数为(人),付款总金额为(元),请分别确定两种优惠方案中与的函数关系式;
(2)请你结合参加听音乐会的学生人数,计算说明怎样购票花费少?
25、(10分)正方形的对角线相交于点,点又是正方形的一个顶点,而且这两个正方形的边长相等.试证明:无论正方形绕点怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的.
26、(12分)计划建一个长方形养鸡场,为了节省材料,利用一道足够长的墙做为养鸡场的一边,另三边用铁丝网围成,如果铁丝网的长为35m.
(1)计划建养鸡场面积为150m2,则养鸡场的长和宽各为多少?
(2)能否建成的养鸡场面积为160m2?如果能,请算出养鸡场的长和宽;如果不能,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是( 整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).
【详解】
A. =3, 不是最简二次根式;
B. ,最简二次根式;
C. =,不是最简二次根式;
D. =,不是最简二次根式.
故选:B
本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.
2、B
【解析】
根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.
【详解】
解:已知直线y=kx+b经过第一、三、四象限,
则得到k>0,b<0,
那么直线y=bx+k经过第一、二、四象限,
故选:B.
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
3、B
【解析】
根据二次根式的性质,先求出x和y的值,然后代入计算即可.
【详解】
解:∵,
∴,,
∴且,
∴,
∴,
∴,
∵,
∴的算术平方根为1;
故选:B.
本题考查了二次根式的性质,二次根式的化简,以及算术平方根的定义,解题的关键是熟练掌握二次根式的性质,正确求出x、y的值.
4、C
【解析】
首先将已知点的坐标代入直线y=x+1求得a的值,然后观察函数图象得到在点P的右边,直线y=x+1都在直线y=mx+n的下方,据此求解.
【详解】
依题意,得:,
解得:a=1,
由图象知:于不等式x+1≥mx+n的解集是x≥1
此题考查一次函数与一元一次不等式,解题关键在于求得a的值
5、B
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A不是轴对称图形,是中心对称图形;
B是轴对称图形,也是中心对称图形;
C和D是轴对称图形,不是中心对称图形.
故选B.
掌握中心对称图形与轴对称图形的概念:
轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;
中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
6、B
【解析】
函数y=ax+b和y=kx的图象交于点P(−4,−2),
即x=−4,y=−2同时满足两个一次函数的解析式。
所以关于x,y的方程组的解是: x= - 4 , y= - 2.
故选B.
点睛:由图可知:两个一次函数的交点坐标为(-4,-2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
7、B
【解析】
首先根据点所在象限确定横、纵坐标的符号,进一步可得关于m的不等式组,再解所得的不等式组即可求得正确的结果.
【详解】
解:因为第一象限内的点的坐标特点是(+,+),所以5-m>0,m+3>0,解得.
故选B.
本题考查了平面直角坐标系各象限点的坐标特点和解一元一次不等式组,解决问题的关键是熟记各象限内点的坐标符号特点并列出不等式组求解,具体来说:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).
8、D
【解析】
由图象对称轴为直线x=-,则-=-,得a=b,
A中,由图象开口向上,得a>0,则b=a>0,由抛物线与y轴交于负半轴,则c<0,则abc<0,故A错误;
B中,由a=b,则a-b=0,故B错误;
C中,由图可知当x=1时,y<0,即a+b+c<0,又a=b,则2b+c<0,故C错误;
D中,由抛物线的对称性,可知当x=1和x=-2时,函数值相等,则当x=-2时,y<0,即4a-2b+c<0,则4a+c<2b,故D正确.
故选D.
点睛:二次函数y=ax2+bx+c(a≠0)中,a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定.此外还要注意x=1,-1,2及-2对应函数值的正负来判断其式子的正确与否.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据菱形的面积等于对角线乘积的一半列式进行计算即可得解.
【详解】
解:∵菱形的两条对角线长分别为3和4,
∴菱形的面积=×3×4=1.
故答案为:1.
本题考查了菱形的性质,菱形的面积通常有两种求法,可以用底乘以高,也可以用对角线乘积的一半求解,计算时要根据具体情况灵活运用.
10、x=3
【解析】
先将-x移到方程右边,再把方程两边平方,使原方程化为整式方程x2=9,求出x的值,把不合题意的解舍去,即可得出原方程的解.
【详解】
解:整理得:=x+1,
方程两边平方,得:2x+10=x2+2x+1,
移项合并同类项,得:x2=9,
解得:x1=3,x2=-3,
经检验,x2=-3不是原方程的解,
则原方程的根为:x=3.
故答案为:x=3.
本题考查了解无理方程,无理方程在有些地方初中教材中不再出现,比如湘教版.
11、1
【解析】
根据分式无意义的条件:分母等于0,进行计算即可.
【详解】
∵分式无意义,
∴,
∴.
故答案为:1.
本题考查分式有无意义的条件,明确“分母等于0时,分式无意义;分母不等于0时,分式有意义”是解题的关键.
12、6
【解析】
根据反比例函数的性质,k=xy,把A、B坐标代入列出方程组求解即可得k的值。
【详解】
解:∵、在的图像上,
∴
解得:m=3,k=6
∴k=6
本题考查了反比例函数,熟练掌握待定系数法求函数解析式是关键。
13、
【解析】
解1x4=31得x1=4或x1=-4(舍),再解x1=4可得.
【详解】
解:1x4=31,
x4=16,
x1=4或x1=-4(舍),
∴x=±1,
故答案为:x=±1.
本题考查解高次方程的能力,利用平方根的定义降幂、求解是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)1500,2700;(2)4,1;(3)在整个上学的途中 从12分钟到1分钟小明骑车速度最快,最快的速度是 450 米/分.
【解析】
(1)因为轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;共行驶的路程小明家到学校的距离折回书店的路程.
(2)与轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.
(3)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.
【详解】
解:(1)轴表示路程,起点是家,终点是学校,
小明家到学校的路程是1500米.
(米
即:本次上学途中,小明一共行驶了2700米.
(2)由图象可知:小明在书店停留了4分钟.本次上学,小明一共用了1分钟;
(3)折回之前的速度(米分),
折回书店时的速度(米分),
从书店到学校的速度(米分),
经过比较可知:小明在从书店到学校的时候速度最快,
即:在整个上学的途中从12分钟到1分钟小明骑车速度最快,最快的速度是450米分.
故答案是:(1)1500,2700;(2)4,1.
本题考查了函数的图象及其应用,解题的关键是理解函数图象中轴、轴表示的量及图象上点的坐标的意义.
15、(1)4.5首;(2)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人;(3)见解析.
【解析】
分析:(1)根据统计图中的数据可以求得这组数据的中位数;
(2)根基表格中的数据可以解答本题;
(3)根据统计图和表格中的数据可以分别计算出比赛前后的众数和中位数,从而可以解答本题.
解:(1)本次调查的学生有:20÷=120(名),
背诵4首的有:120﹣15﹣20﹣16﹣13﹣11=45(人),
∵15+45=60,
∴这组数据的中位数是:(4+5)÷2=4.5(首),
故答案为4.5首;
(2)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有:1200×=850(人),
答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人;
(3)活动启动之初的中位数是4.5首,众数是4首,
大赛比赛后一个月时的中位数是6首,众数是6首,
由比赛前后的中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次举办后的效果比较理想.
点睛:本题考查扇形统计图、条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
16、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.
【解析】
(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.
(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.
(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.
【详解】
(1)证明:如图1中,连接BD.
∵点E,H分别为边AB,DA的中点,
∴EH∥BD,EH=BD,
∵点F,G分别为边BC,CD的中点,
∴FG∥BD,FG=BD,
∴EH∥FG,EH=GF,
∴中点四边形EFGH是平行四边形.
(2)四边形EFGH是菱形.
证明:如图2中,连接AC,BD.
∵∠APB=∠CPD,
∴∠APB+∠APD=∠CPD+∠APD,
即∠APC=∠BPD,
在△APC和△BPD中,
∵AP=PB,∠APC=∠BPD,PC=PD,
∴△APC≌△BPD,
∴AC=BD.
∵点E,F,G分别为边AB,BC,CD的中点,
∴EF=AC,FG=BD,
∵四边形EFGH是平行四边形,
∴四边形EFGH是菱形.
(3)四边形EFGH是正方形.
证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.
∵△APC≌△BPD,
∴∠ACP=∠BDP,
∵∠DMO=∠CMP,
∴∠COD=∠CPD=90°,
∵EH∥BD,AC∥HG,
∴∠EHG=∠ENO=∠BOC=∠DOC=90°,
∵四边形EFGH是菱形,
∴四边形EFGH是正方形.
考点:平行四边形的判定与性质;中点四边形.
17、 (1)1;(2) -12+4.
【解析】
(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;
(2)利用完全平方公式和平方差公式展开,然后再进行合并即可.
【详解】
(1)原式=(4 -2)÷2
=2÷2
=1;
(2)原式=5-3-(12-4+2)
=2-14+4
=-12+4.
本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.
18、(1)证明见解析(2)12
【解析】
(1)根据∠A,∠C利用三角形内角和定理求得∠B=60°,再根据∠A是公共角即可求证△ADE∽△ABC;
(2)根据△ADE∽△ABC,利用相似三角形对应边成比例,将已知条件代入即可得出答案.
【详解】
(1)在中,
△ADE∽△ABC
(2)△ADE∽△ABC,
一、填空题(本大题共5个小题,每小题4分,共20分)
19、5 5 3
【解析】
直接利用二次根式的性质化简求出即可.
【详解】
=5;=5;=3.
故答案为:5.;5;3.
此题考查二次根式的化简,解题关键在于掌握二次根式的性质.
20、1≤y≤1
【解析】
将点(6,0)代入解析式即可求出k的值,得到一次函数的增减性,然后结合自变量的取值范围得到函数值的取值范围即可.
【详解】
∵一次函数的图象与x轴交点的横坐标为,
∴这个交点的坐标为(6,0),
把(6,0)代入中得:
,
,
∵<0,y随x的增大而减小,
当时,=1.
当时,.
则.
故答案是:.
本题考查了利用直线上点坐标确定解析式,熟练掌握直线上任意一点的坐标都满足函数关系式;对于一次函数求极值问题可通过增减性求,也可以代特殊值求出.
21、x<-1;
【解析】
由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x>k1x+b解集.
【详解】
解:两个条直线的交点坐标为(-1,3),且当x<-1时,直线l2在直线l1的上方,故不等式k2x>k1x+b的解集为x<-1.
故本题答案为:x<-1.
本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
22、<
【解析】
先根据直线y=1018x-1019判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.
【详解】
∵直线y=1018x-1019,k=1018>0,
∴y随x的增大而增大,
又∵x1<x1+1,
∴y1<y1.
故答案为:<.
本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
23、1
【解析】
根据开平方运算的法则计算即可.
【详解】
1.
故答案为:1.
本题考查了实数的运算-开方运算,比较简单,注意符号的变化.
二、解答题(本大题共3个小题,共30分)
24、(1),;(2)①当购买24张票时,两种方案付款一样多,②时,,方案①付款较少,③当时,,方案②付款较少.
【解析】
(1)首先根据方案①:付款总金额=购买成人票金额+除去4人后的学生票金额;
方案②:付款总金额=(购买成人票金额+购买学生票金额)打折率,列出关于的函数关系式;
(2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数,再分三种情况讨论.
【详解】
(1)按方案①可得:
按方案②可得:
(2)因为,
①当时,得,解得,
∴当购买24张票时,两种方案付款一样多.
②当时,得,解得,
∴时,,方案①付款较少.
③当时,得,解得,
当时,,方案②付款较少.
本题根据实际问题考查了一次函数的应用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点的取值,再进一步讨论.
25、见解析.
【解析】
分两种情况讨论:(1)当正方形边与正方形的对角线重合时;(2)当转到一般位置时,由题求证,故两个正方形重叠部分的面积等于三角形的面积,得出结论.
【详解】
(1)当正方形绕点转动到其边,分别于正方形的两条对角线重合这一特殊位置时,
显然;
(2)当正方形绕点转动到如图位置时,
∵四边形为正方形,
∴,,,即
又∵四边形为正方形,
∴,即,
∴,
在和中,
,
∴,
∵,
又,
∴.
此题考查正方形的性质,三角形全等的判定与性质,三角形的面积等知识点.
26、(1)养鸡场的长和宽各为15m、10m或20m、7.5m;(2)不能,理由见解析.
【解析】
(1)设养鸡场垂直于墙的一边长为x米,则另一边长为(35-2x)米,根据矩形面积公式即可列出方程,解方程即得结果;
(2)若能建成,仿(1)题的方法列出方程,再根据一元二次方程的根的判别式检验即可得出结论.
【详解】
解:(1)设养鸡场垂直于墙的一边长为x米,根据题意,得:
=150,解得:,,
当时,==15;
当时,==20;
答:养鸡场的长和宽各为15m、10m或20m、7.5m.
(2)不能.理由如下:
若能建成,设养鸡场垂直于墙的一边长为y米,则有=160,即,
∵,
∴此方程无解,所以无法建成面积为160m2的养鸡场.
本题是一元二次方程的应用问题,主要考查了矩形的面积、一元二次方程的解法和根的判别式等知识,属于常考题型,正确理解题意、找准相等关系列出方程是解题的关键.
题号
一
二
三
四
五
总分
得分
一周诗词诵背数量
3首
4首
5首
6首
7首
8首
人数
10
10
15
40
25
20
2024年江苏省南京市九上数学开学质量跟踪监视试题【含答案】: 这是一份2024年江苏省南京市九上数学开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省南京市鼓楼实验中学2023-2024学年九上数学期末学业质量监测模拟试题含答案: 这是一份江苏省南京市鼓楼实验中学2023-2024学年九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,一元二次方程的根为等内容,欢迎下载使用。
2023-2024学年江苏省南京市鼓楼区鼓楼实验中学数学九年级第一学期期末检测模拟试题含答案: 这是一份2023-2024学年江苏省南京市鼓楼区鼓楼实验中学数学九年级第一学期期末检测模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,下图中几何体的左视图是,计算的结果是等内容,欢迎下载使用。