2024年江苏省南通市崇川学校数学九上开学教学质量检测试题【含答案】
展开
这是一份2024年江苏省南通市崇川学校数学九上开学教学质量检测试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列等式中,计算正确的是( )
A.B.
C.D.
2、(4分)下列y关于x的函数中,是正比例函数的为( )
A.y=x2B.y=C.y=D.y=
3、(4分)下列各式中,正确的是( )
A.B.C.D.
4、(4分)如图,正方形ABCD的四个顶点A、B、C、D正好分别在四条平行线l1、l2、l3、l4上.若从上到下每两条平行线间的距离都是2cm,则正方形ABCD的面积为( )
A.4cm2B.5cm2C.20cm2D.30cm2
5、(4分)《九章算术》中的“折竹抵地”问题:一根竹子高丈(丈尺),折断后竹子顶端落在离竹子底端尺处,折断处离地面的高度是多少?( )
A.B.C.D.
6、(4分)如图,在▱ABCD中,∠BAD=120°,连接BD,作AE∥BD交CD延长线于点E,过点E作EF⊥BC交BC的延长线于点F,且CF=1,则AB的长是( )
A.2B.1C.D.
7、(4分)化简的结果是( )
A.B.C.1D.
8、(4分)若函数的解析式为y=,则当x=2时对应的函数值是( )
A.4B.3C.2D.0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)有一组数据:2,5,5,6,7,这组数据的平均数为_____.
10、(4分)对于平面直角坐标系中的点,给出如下定义:记点到轴的距离为,到轴的距离为,若,则称为点的最大距离;若,则称为点的最大距离.例如:点到到轴的距离为4,到轴的距离为3,因为,所以点的最大距离为4.若点在直线上,且点的最大距离为5,则点的坐标是_____.
11、(4分)若分式的值为零,则__________.
12、(4分)在射击比赛中,某运动员的1次射击成绩(单位:环)为:7,8,10,8,9,1.计算这组数据的方差为_________.
13、(4分)在平面直角坐标系中,将直线y=-2x+1的图象向左平移2个单位,再向上平移1个单位,所得到直线的解析式是__________。
三、解答题(本大题共5个小题,共48分)
14、(12分)分解因式:
(1). (2).
15、(8分)解不等式组:,并将解集在数轴上表示出来.
16、(8分)列分式方程解应用题:今年植树节,某校师生到距学校20千米的公路旁植树,一班师生骑自行车先走,走了16千米后,二班师生乘汽车出发,结果同时到达.已知汽车的速度比自行车的速度每小时快60千米,求两种车的速度各是多少?
17、(10分)我市飞龙商贸城有甲、乙两家商店均出售白板和白板笔,并且标价相同,每块白板50元,每支白板笔4元.某校计划购买白板30块,白板笔若干支(白板笔数不少于90支),恰好甲、乙两商店开展优惠活动,甲商店的优惠方式是白板打9折,白板笔打7折;乙商店的优惠方式是白板及白板笔都不打折,但每买2块白板送白板笔5支.
(1)以x(单位:支)表示该班购买的白板笔数量,y(单位:元)表示该班购买白板及白板笔所需金额.分别就这两家商店优惠方式写出y关于x的函数解析式;
(2)请根据白板笔数量变化为该校设计一种比较省钱的购买方案.
18、(10分)如图,在3×3的方格内,填写了一些代数式和数.
(1)在图(1)中各行、各列及对角线上三个数之和都相等,请你求出x,y的值;
(2)把满足(1)的其它6个数填入图(2)中的方格内.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在开展“全民阅读”活动中,某校为了解全校1500名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1500名学生一周的课外阅读时间不少于7小时的人数是_____.
20、(4分)关于x的方程有增根,则m的值为_____
21、(4分)如图,在平行四边形ABCD中,E为AD边上一点,且AE=AB,若∠BED=160°,则∠D的度数为__________.
22、(4分)在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B之间的距离应为_________ 米.
23、(4分)计算:=_____;|﹣|=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,每个小正方形的边长均为1,求证:△ABC是直角三角形.
25、(10分)已知直线分别交x轴于点A、交y轴于点
求该直线的函数表达式;
求线段AB的长.
26、(12分)甲、乙两人同时从P地出发步行分别沿两个不同方向散步,甲以的速度沿正北方向前行;乙以的速度沿正东方向前行,
(1)过小时后他俩的距离是多少?
(2)经过多少时间,他俩的距离是?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.
【详解】
A、a10÷a9=a,正确;
B、x3•x2=x5,故错误;
C、x3-x2不是同类项不能合并,故错误;
D、(-3xy)2=9x2y2,故错误;
故选A.
本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.
2、C
【解析】
试题解析:A、y是x的二次函数,故A选项错误;
B、y是x的反比例函数,故B选项错误;
C、y是x的正比例函数,故C选项正确;
D、y是x的一次函数,故D选项错误;
故选C.
考点:正比例函数的定义.
3、D
【解析】
先想一下分式的基本性质的内容,根据分式的基本性质逐个判断即可.
【详解】
解:(A)原式=,故A错误;
(B)原式=,故B错误;
(C)原式=,故C错误;
故选:D.
本题考查了分式的基本性质的应用,主要考查学生对分式的基本性质的理解能力和判断能力,题目比较典型,比较容易出错.
4、C
【解析】
过D作直线EF与平行线垂直,交l1与点E,交l4于点F.再证明,得到 ,故可求的CD的长,进而求出正方形的面积.
【详解】
过D作直线EF与l2垂直,交l1与点E,交l4于点F.
,即
四边形ABCD为正方形
在和中
即正方形的面积为20
故选C.
本题主要考查平行线的性质,关键在于利用三角形全等求正方形的边长.
5、A
【解析】
根据题意画出图形,设折断处离地面的高度为x,则AB=10-x,AC=x,BC=6,进而根据勾股定理建立方程求解即可.
【详解】
根据题意可得如下图形:
设折断处A离地面的高度为x,则AB=10-x,AC=x,BC=6,
∴,
解得:,
故选:A.
本题主要考查了勾股定理的运用,熟练掌握相关公式是解题关键.
6、B
【解析】
证明四边形ABDE是平行四边形,得出AB=DE,证出CE=2AB,求出∠CEF=30°,得出CE=2CF=2,即可得出AB的长.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,∠BCD=∠BAD=120°,
∵AE∥BD,
∴四边形ABDE是平行四边形,
∴AB=DE,
∴CE=2AB,
∵∠BCD=120°,
∴∠ECF=60°,
∵EF⊥BC,
∴∠CEF=30°,
∴CE=2CF=2,
∴AB=1;
故选:B.
本题考查平行四边形的性质与判定、直角三角形的性质;熟练掌握平行四边形的判定与性质是解决问题的关键.
7、B
【解析】
根据二次根式的性质可得=∣∣,然后去绝对值符号即可.
【详解】
解:=∣∣=,
故选:B.
本题主要考查二次根式的化简,解此题的关键在于熟记二次根式的性质.
8、A
【解析】
把x=2代入函数解析式y=,即可求出答案.
【详解】
把x=2代入函数解析式y=得,
故选A.
本题考查的是函数值的求法.将自变量的值x=2代入函数解析式并正确计算是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
把给出的这1个数据加起来,再除以数据个数1,就是此组数据的平均数.
【详解】
解:(2+1+1+6+7)÷1
=21÷1
=1.
答:这组数据的平均数是1.
故答案为:1.
此题主要考查了平均数的意义与求解方法,关键是把给出的这1个数据加起来,再除以数据个数1.
10、或
【解析】
根据点C的“最大距离”为5,可得x=±5或y=±5,代入可得结果.
【详解】
设点C的坐标(x,y),
∵点C的“最大距离”为5,
∴x=±5或y=±5,
当x=5时,y=-7(不合题意,舍去),
当x=-5时,y=3,
当y=5时,x=-7(不合题意,舍去),
当y=-5时,x=3,
∴点C(-5,3)或(3,-5).
故答案为:(-5,3)或(3,-5).
本题考查一次函数的应用,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用特殊位置解决数学问题.
11、-1
【解析】
直接利用分式的值为零则分子为零进而得出答案.
【详解】
解:分式的值为零,
则a+1=0,
解得:a=-1.
故答案为-1.
此题主要考查了分式的值为零的条件,正确把握定义是解题关键.
12、
【解析】
试题分析:先计算平均数所以方差为
考点:方差;平均数
13、y=-2x-2
【解析】
利用平移中点的变化规律:横坐标左移加,右移减;纵坐标上移加,下移减,求解即可.
【详解】
将直线y=−2x+1的图象向左平移2个单位,再向上平移一个单位,得到的直线的解析式是:y=−2(x+2)+1+1=−2x−2,即y=−2x−2.
本题考查了一次函数图象与几何变换,熟练掌握平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)
【解析】
(1)首先提取公因式2,进而利用完全平方公式分解因式即可.
(2)先用平方差公式分解,再化简即可.
【详解】
解:(1)原式;
(2)原式
.
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键,注意分解要彻底.
15、-7<≤1.数轴见解析.
【解析】
分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
【详解】
解:
解不等式①,得≤1
解不等式②,得>-7
∴不等式组的解集为-7<≤1.
在数轴上表示不等式组的解集为
故答案为-7<≤1.
本题考查了解一元一次不等式组,熟知“大大取大,小小取小,大小小大中间找,大大小小找不了“的原则是解此题的关键.
16、汽车和自行车的速度分别是75千米/时、15千米/时.
【解析】
试题分析:设自行车的速度为x千米/时,则汽车的速度为(x+60)千米/时,根据等量关系 :一班师生骑自行车走4千米所用时间=二班师生乘汽车20千米所用时间,列出方程即可得解.
试题解析:设自行车的速度为x千米/时,则汽车的速度为(x+60)千米/时,
根据题意得: ,
解得:x=15(千米/时),
经检验,x=15是原方程的解且符合题意.,
则汽车的速度为:(千米/时),
答:汽车和自行车的速度分别是75千米/时、15千米/时.
17、(1)到甲商店购买所需金额为: y=2.8x+1350;到乙商店购买所需金额为:y=4x+1200;(2)购买白板笔在多于1支时到甲商店,少于1支时到乙商店,恰好购买1支时到甲商店和到乙商店一样
【解析】
(1)根据总价=单价×数量的关系,分别列出到甲、乙两商店购买所需金额y与白板笔数量x的关系式,化简即得y与x的一次函数关系式;
(2)根据两个商店购买的钱数,分别由甲大于乙,甲等于乙,甲小于乙列出一次不等式求解即可.
【详解】
(1)到甲商店购买所需金额为:y=50×0.9×30+4×0.7x=2.8x+1350,即y=2.8x+1350,
到乙商店购买30块白板可获赠=75支白板笔,实际应付款y=50×30+4(x-75)=4x+1200,即y=4x+1200.
(2)由2.8x+13501,
由2.8x+1350=4x+1200解得x=1,
由2.8x+1350>4x+1200解得x
相关试卷
这是一份2024年江苏省期无锡市天一实验学校数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省南通市启秀中学九上数学开学教学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省南通市港闸区数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。