2024年江苏省无锡市宜城环科园教联盟九年级数学第一学期开学监测模拟试题【含答案】
展开这是一份2024年江苏省无锡市宜城环科园教联盟九年级数学第一学期开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米,数据0.000000007用科学记数法表示为( )
A.0.7×10-8B.7×10-8C.7×10-9D.7×10-10
2、(4分)如图,正比例函数和一次函数的图像相交于点.当时,则( )
A.B.C.D.
3、(4分)已知,则(b+d≠0)的值等于( )
A.B.C.D.
4、(4分)一次函数y=kx+b,当k<0,b<0时,它的图象大致为( )
A.B.C.D.
5、(4分)如图,一直线与两坐标轴的正半轴分别交于A、B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为20,则该直线的函数表达式是( )
A.y=x+10B.y=﹣x+10C.y=x+20D.y=﹣x+20
6、(4分)根据《九章算术》的记载中国人最早使用负数,下列四个数中的负数是( )
A.B.C.D.
7、(4分)计算(2+)(﹣2)的结果是( )
A.1B.0C.﹣1D.﹣7
8、(4分)如图是一次函数y1=kx+b与y2=x+a的图象,则下列结论中错误的是( )
A.k<0B.a>0C.b>0D.方程kx+b=x+a的解是x=3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算的结果是_____.
10、(4分)在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,投到红球的概率是__________.
11、(4分)函数y=x+1与y=ax+b的图象如图所示,那么,使y、y的值都大于0的x的取值范围是______.
12、(4分)在中,若,则_____________
13、(4分)若ab,则32a__________32b(用“>”、“”或“<”填空).
三、解答题(本大题共5个小题,共48分)
14、(12分) “金牛绿道行“活动需要租用、两种型号的展台,经前期市场调查发现,用元租用的型展台的数量与用元租用的型展台的数量相同,且每个型展台的价格比每个型展台的价格少元.
(1)求每个型展台、每个型展台的租用价格分别为多少元(列方程解应用题);
(2)现预计投入资金至多元,根据场地需求估计,型展台必须比型展台多个,问型展台最多可租用多少个.
15、(8分)已知一次函数的图象经过点 和.
(1)求该函数图像与x轴的交点坐标;
(2)判断点是否在该函数图像上.
16、(8分)如图,某中学准备在校园里利用院墙的一段再围三面篱笆,形成一个矩形花园(院墙长米),现有米长的篱笆.
(1)请你设计一种围法(篱笆必须用完),使矩形花园的面积为米.
(2)如何设计可以使得围成的矩形面积最大?最大面积是多少?
17、(10分)菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:
(1)求点D的坐标;
(2)若反比例函数y=(k≠0)的图象经过点H,则k= ;
(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
18、(10分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:
(1)在图①中画一条线段AB,使AB= ;
(2)在图②中画一个以格点为顶点,面积为2的正方形ABCD.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知:,,代数式的值为_________.
20、(4分)小明做了一个平行四边形的纸板,但他不确定纸板形状是否标准,小聪用刻度尺量了这个四边形的四条边长,然后说这个纸板是标准的平行四边形,小聪的依据是_____.
21、(4分)在平面直角坐标系中,四边形是菱形。若点A的坐标是,点的坐标是__________.
22、(4分)2016年5月某日,重庆部分区县的最高温度如下表所示:
则这组数据的中位数是__________.
23、(4分)将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知一个一次函数的图象与一个反比例函数的图象交于点.
分别求出这两个函数的表达式;
在同一个平面直角坐标系中画出这两个函数的图象,根据图象回答:当取何值时,一次函数的值大于反比例函数的值?
求平面直角坐标中原点与点构成的三角形的面积.
25、(10分)解不等式组:并写出它的所有的整数解.
26、(12分)化简求值:,其中m=﹣1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
绝对值小于1的数也可以用科学计数法表示,一般形式为a×10-n,其中1≤|a|<10,与较大数的科学计数法不同的是其使用的是负指数幂,n由原数左边起第一个不为零的数字前面的0的个数决定.
【详解】
0.000000007=7×10-9,
故选:C.
题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数决定.
2、C
【解析】
由图象可以知道,当x=3时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.
【详解】
解:由图象知,当x>3时,y1的图象在y2上方,
y2
本题考查了两条直线相交与平行,正确的识别图象是解题的关键.
3、B
【解析】
由已知可知:5b=7a,5d=7c,得到(b+d)的值.
【详解】
由,得5b=7a,5d=7c,所以
故选B.
本题考查分式的基本性质,学生们熟练掌握即可.
4、B
【解析】
根据一次函数的性质可得出结论.
【详解】
解:因为 一次项系数 则随的增大而减少,函数经过二,四象限;
常数项 则函数一定经过三、四象限;
因而一次函数的图象一定经过第二、三、四象限.
故选B.
本题考查了一次函数的图像和性质,熟练掌握函数的性质是解题关键.
5、B
【解析】
设点P的坐标为(x,y),根据矩形的性质得到|x|+|y|=10,变形得到答案.
【详解】
设点P的坐标为(x,y),
∵矩形的周长为20,
∴|x|+|y|=10,即x+y=10,
∴该直线的函数表达式是y=﹣x+10,
故选:B.
本题考查的是一次函数解析式的求法,掌握矩形的性质、灵活运用待定系数法求一次函数解析式是解题的关键.
6、C
【解析】
将各数化简即可求出答案.
【详解】
解:A.原式,故A不是负数;
B.原式,故B不是负数;
C. 是负数;
D.原式,故D不是负数;
故选:C.
本题考查正数与负数,解题的关键是将原数化简,本题属于基础题型.
7、C
【解析】
分析:
根据二次根式的乘法法则结合平方差公式进行计算即可.
详解:
原式=.
故选C.
点睛:熟记“二次根式的乘法法则和平方差公式”是正确解答本题的关键.
8、B
【解析】
根据一次函数的性质对ABC选项进行判断;利用一次函数与一元一次方程的关系对D项进行判断.
【详解】
∵一次函数y1=kx+b经过第一、二、三象限,
∴k<0,b>0,所以A、C正确;
∵直线y2=x+a的图象与y轴的交点在x轴的下方,
∴a<0,所以B错误;
∵一次函数y1=kx+b与y2=x+a的图象的交点的横坐标为3,
∴x=3时,kx+b=x+a,所以D正确.
故选B.
本题考查了一次函数与一元一次不等式.从函数的角度看,就是寻求使一次y=kx+b的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
【分析】根据分式的加减法法则进行计算即可得答案.
【详解】原式=
=
=,
故答案为.
【点睛】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.
10、
【解析】
由在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同,直接利用概率公式求解即可求得答案.
【详解】
∵在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.
∴从中随机摸出一个球,摸到红球的概率是:
故答案为:
此题考查概率公式,掌握运算法则是解题关键
11、−1
根据x轴上方的图象的y值大于0进行解答.
【详解】
如图所示,x>−1时,y>0,
当x<2时,y>0,
∴使y、y的值都大于0的x的取值范围是:−1
12、;
【解析】
根据在直角三角形中,角所对的边是斜边的一半,即可的BC的长.
【详解】
根据题意中,若
所以可得BC=
故答案为1
本题主要考查在直角三角形中,角所对的边是斜边的一半,这是一个重要的直角三角形的性质,应当熟练掌握.
13、
【解析】
根据不等式的性质进行判断即可
【详解】
解:∵ab,
∴2a2b
∴32a32b
故答案为:<
本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
三、解答题(本大题共5个小题,共48分)
14、(1)每个A型展台,每个B型展台的租用价格分别为800元、1200元;(2)B型展台最多可租用31个.
【解析】
(1)首先设每个A型展台的租用价格为x元,则每个B型展台的租用价格为(x+400)元,根据关键语句“用1600元租用的A型展台的数量与用2400元租用的B型展台的数量相同.”列出方程,解方程即可.
(2)根据预计投入资金至多80000元,列不等式可解答.
【详解】
解:(1)设每个A型展台的租用价格为x元,则每个B型展台的租用价格为(x+400)元,
由题意得:,
解得:x=800,
经检验:x=800是原分式方程的解,
∴B型展台价格:x+400=800+400=1200,
答:每个A型展台,每个B型展台的租用价格分别为800元、1200元;
(2)设租用B型展台a个,则租用A型展台(a+22)个,
800(a+22)+1200a≤80000,
a≤31.2,
答:B型展台最多可租用31个.
本题考查了分式方程的应用和一元一次不等式的应用,弄清题意,表示出A、B两种展台的租用价格,确认相等关系和不等关系是解决问题的关键.
15、(1)(2,0);(2)点不在该函数图像上.
【解析】
(1)设一次函数解析式为y=kx+b,把已知两点坐标代入求出k与b的值,即可确定出解析式,然后令y=0,解出x,即可求得交点;
(2)将x=-3代入解析式计算y的值,与6比较即可.
【详解】
解:(1)设一次函数解析式为y=kx+b,
把 和代入解析式得:,解得:,
∴一次函数解析式为,
令y=0,则,解得:,
∴该函数图像与x轴的交点坐标为(2,0);
(2)将x=-3代入解析式得:,
∵,
∴点不在该函数图像上.
此题考查了待定系数法求一次函数解析式,以及一次函数图像上点的坐标特征,熟练掌握待定系数法是解本题的关键.
16、见详解.
【解析】
(1)设AB为xm,则BC为(40-2x)m,根据题意可得等量关系:矩形的面积=长×宽=150,根据等量关系列出方程,再解即可;
(2)根据题意和图形可以得到S与x之间的函数关系,将函数关系式化为顶点式,即可解答本题.
【详解】
解:(1)设AB为xm,则BC为(40-2x)m,根据题意可得:
X(40-2x)=150
解得:x1=,x2=15.
:当x=时,40-2x=30>25.故不满足题意,应舍去.
②当x=15时,40-2x=10<25,故当x=15时,满足实际要求.
∴当x=15 时,使矩形花园的面积为米.
(2)设矩形的面积为S,则依意得:
S= X(40-2x)=-2x2+40x=-2(x-5)2+50
∴当x=5,时S有最大值.最大值为50.
本题考查了二次函数的实际应用,正理解题意找到等量关系列出方程是解题的关键.
17、(1)(﹣,3)(2) (3)(,)或(﹣,5)或(,﹣)
【解析】
(1)由线段DE,CD的长是方程x2﹣9x+18=0的两根,且CD>DE,可求出CD、DE的长,由四边形ABCD是菱形,利用菱形的性质可求得D点的坐标.
(2)由(1)可得OB、CM,可得B、C坐标,进而求得H点坐标,由反比例函数y=(k≠0)的图象经过点H,可求的k的值;
(3)分别以CF为平行四边形的一边或者为对角线的情形进行讨论即可.
【详解】
(1)x2﹣9x+18=0,
(x﹣3)(x﹣6)=0,
x=3或6,
∵CD>DE,
∴CD=6,DE=3,
∵四边形ABCD是菱形,
∴AC⊥BD,AE=EC==3,
∴∠DCA=30°,∠EDC=60°,
Rt△DEM中,∠DEM=30°,
∴DM=DE=,
∵OM⊥AB,
∴S菱形ABCD=AC•BD=CD•OM,
∴=6OM,OM=3,
∴D(﹣,3);
(2)∵OB=DM=,CM=6﹣=,
∴B(,0),C(,3),
∵H是BC的中点,
∴H(3,),
∴k=3×=;
故答案为;
(3)
①∵DC=BC,∠DCB=60°,
∴△DCB是等边三角形,
∵H是BC的中点,
∴DH⊥BC,
∴当Q与B重合时,如图1,四边形CFQP是平行四边形,
∵FC=FB,
∴∠FCB=∠FBC=30°,
∴∠ABF=∠ABC﹣∠CBF=120°﹣30°=90°,
∴AB⊥BF,CP⊥AB,
Rt△ABF中,∠FAB=30°,AB=6,
∴FB=2=CP,
∴P(,);
②
如图2,∵四边形QPFC是平行四边形,
∴CQ∥PH,
由①知:PH⊥BC,
∴CQ⊥BC,
Rt△QBC中,BC=6,∠QBC=60°,
∴∠BQC=30°,
∴CQ=6,
连接QA,
∵AE=EC,QE⊥AC,
∴QA=QC=6,
∴∠QAC=∠QCA=60°,∠CAB=30°,
∴∠QAB=90°,
∴Q(﹣,6),
由①知:F(,2),
由F到C的平移规律可得P到Q的平移规律,则P(﹣﹣3,6﹣),即P(﹣,5);
③
如图3,四边形CQFP是平行四边形,
同理知:Q(﹣,6),F(,2),C(,3),
∴P(,﹣);
综上所述,点P的坐标为:(,)或(﹣,5)或(,﹣).
本题主要考查平行四边形、菱形的图像和性质,反比例函数的图像与性质等,综合性较大,需综合运用所学知识充分利用已知条件求解.
18、(1)详见解析;(2)详见解析.
【解析】
(1)利用勾股定理即可解决问题.
(2)利用数形结合的思想,画一个边长为的正方形即可.
【详解】
解:(1)线段AB如图所示.
(2)正方形ABCD如图所示.
本题考查作图﹣应用与设计,勾股定理等知识,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4
【解析】
根据完全平方公式计算即可求出答案.
【详解】
解:∵,,
∴x−y=2,
∴原式=(x−y)2=4,
故答案为:4
本题考查二次根式的化简求值和完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.
20、两组对边分别相等的四边形是平行四边形.
【解析】
根据平行四边形的判定可得:两组对边分别相等的四边形是平行四边形.
故答案是:两组对边分别相等的四边形是平行四边形.
21、
【解析】
作AD⊥y轴于点D,由勾股定理求出OA的长,结合四边形是菱形可求出点C的坐标.
【详解】
作AD⊥y轴于点D.
∵点A的坐标是,
∴AD=1,OD=,
∴,
∵四边形是菱形,
∴AC=OA=2,
∴CD=1+2=3,
∴C(3, ).
故答案为:C(3, )
本题考查了菱形的性质,勾股定理以及图形与坐标,根据勾股定理求出OA的长是解答本题的关键.
22、27℃
【解析】
根据中位数的求解方法,先排列顺序,再求解.
【详解】
解:将这组数据按从小到大的顺序排列:24,25,26,26,28,28,29,29,
此组数据的个数是偶数个,所以这组数据的中位数是(26+28)÷2=27,
故答案为27℃.
本题考查了中位数的意义.先把数据按由小到大顺序排序:若数据个数为偶数,则取中间两数的平均数;若数据个数为奇数,则取中间的一个数.
23、y=3x-1
【解析】
∵y=3x+1的图象沿y轴向下平移2个单位长度,
∴平移后所得图象对应的函数关系式为:y=3x+1﹣2,即y=3x﹣1.
故答案为y=3x﹣1.
二、解答题(本大题共3个小题,共30分)
24、(1),;(2)图见详解,或;(3).
【解析】
(1)设反比例的函数解析式为,一次函数的解析式为,将点P代入可得k值,将点Q代入可得m值,将点P、Q代入求解即可;
(2)描点、连线即可画出函数的图象,当一次函数的图象在反比例函数图象的上方时,一次函数的值大于反比例函数的值,由此可确定x的取值;
(3)连接PO,QO,设直线与y轴交于点M,由求解.
【详解】
解:(1)设反比例的函数解析式为,一次函数的解析式为,
将点代入得,解得,
将点代入得,
将点,代入
得:,
解得
所以一次函数的表达式为,反比例函数的表达式为;
(2)函数和的图象如图所示,
由图象可得,当或时,一次函数的值大于反比例函数的值;
(3)如图,连接PO,QO,设直线与y轴交于点M,
直线与y轴的交点坐标M(0,-1),即,点P到y轴的距离为2,点Q到y轴的距离为1,
,
所以平面直角坐标中原点与点构成的三角形的面积为.
本题考查了一次函数与反比例函数的综合,涉及了待定系数法求函数解析式、画函数图象、根据函数图象及函数值的大小确定自变量的取值范围、围成的三角形的面积,熟练掌握待定系数法及运用数形结合的数学思想是解题的关键.
25、1、2、2
【解析】
解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).最后求出整数解即可.
【详解】
解:解不等式①得,x≥1,
解不等式②得,x<1,
∴不等式组的解集是1≤x<1.
∴不等式组的所有整数解是1、2、2.
解一元一次不等式组,一元一次不等式组的整数解.
26、m﹣3,-2.
【解析】
直接将括号里面进行加减运算,再利用分式的混合运算法则计算得出答案.
【详解】
==m﹣3,
把m=﹣1代入得,原式=﹣1﹣3=﹣2.
此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.
题号
一
二
三
四
五
总分
得分
地区
合川
永川
江津
涪陵
丰都
梁平
云阳
黔江
温度(℃)
25
26
29
26
24
28
28
29
相关试卷
这是一份2024年江苏省无锡市宜兴市宜城环科园联盟九上数学开学综合测试试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年江苏省无锡市宜城环科园教联盟九年级数学第一学期期末综合测试试题含答案,共8页。试卷主要包含了下列事件是随机事件的是等内容,欢迎下载使用。
这是一份江苏省无锡市宜兴市宜城环科园教联盟2023-2024学年数学九年级第一学期期末检测模拟试题含答案,共8页。试卷主要包含了如果,那么的值为等内容,欢迎下载使用。