2024年江苏省宜兴市周铁区九上数学开学经典模拟试题【含答案】
展开这是一份2024年江苏省宜兴市周铁区九上数学开学经典模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列计算正确的是( )
A.B.C.D.
2、(4分)下列函数中,y随x增大而减小的是( )
A.y=x-1B.y=-2x+3C.y=2x-1D.y=
3、(4分)对四边形ABCD添加以下条件,使之成为平行四边形,正面的添加不正确的是( )
A.AB∥CD,AD=BCB.AB=CD,AB∥CD
C.AB=CD,AD=BCD.AC与BD互相平分
4、(4分)在中,,,,则的长为( )
A.3B.2C.D.4
5、(4分)如图:菱形ABCD的对角线AC,BD相交于点O,AC= ,BD=,动点P在线段BD上从点B向点D运动,PF⊥AB于点F,PG⊥BC于点G,四边形QEDH与四边形PFBG关于点O中心对称,设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,,若S1=S2,则的值是( )
A.B.或C.D.不存在
6、(4分)如图,已知△ ABC中,AB=AC,∠ BAC=90°,直角∠ EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△ EPF是等腰直角三角形; ③2S四边形AEPF=S△ ABC; ④BE+CF=EF.当∠ EPF在△ ABC内绕顶点P旋转时(点E与A、B重合).上述结论中始终正确的有( )
A.1个B.2个C.3个D.4个
7、(4分)如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是( )
A.B.C.2D.
8、(4分)如图,折叠菱形纸片ABCD,使得A′D′对应边过点C,若∠B=60°,AB=2,当A′E⊥AB时,AE的长是( )
A.2B.2C.D.1+
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=_______.
10、(4分)已知反比例函数,当时,y的取值范围是________.
11、(4分)若代数式在实数范围内有意义,则x的取值范围是_____.
12、(4分)有一段斜坡,水平距离为120米,高50米,在这段斜坡上每隔6.5米种一棵树(两端各种一棵树),则从上到下共种____棵树.
13、(4分)某厂去年1月份的产值为144万元,3月份下降到100万元,求这两个月平均每月产值降低的百分率.如果设平均每月产值降低的百分率是x,那么列出的方程是___.
三、解答题(本大题共5个小题,共48分)
14、(12分)关于x的一元二次方程有实数根.
(1)求k的取值范围;
(2)若k是该方程的一个根,求的值.
15、(8分)在研究反比例函数y=﹣的图象时,我们发现有如下性质:
(1)y=﹣的图象是中心对称图形,对称中心是原点.
(2)y=﹣的图象是轴对称图形,对称轴是直线y=x,y=﹣x.
(3)在x<0与x>0两个范围内,y随x增大而增大;
类似地,我们研究形如:y=﹣+3的函数:
(1)函数y=﹣+3图象是由反比例函数y=﹣图象向____平移______个单位,再向_______平移______个单位得到的.
(2)y=﹣+3的图象是中心对称图形,对称中心是______.
(3)该函数图象是轴对称图形吗?如果是,请求出它的对称轴,如果不是,请说明理由.
(4)对于函数y=,x在哪些范围内,y随x的增大而增大?
16、(8分)村有肥料200吨,村有肥料300吨,现要将这些肥料全部运往、两仓库.从村往、两仓库运肥料的费用分别为每吨20元和25元;从村往、两仓库运肥料的费用分别为每吨15元和18元;现仓库需要肥料240吨,现仓库需要肥料260吨.
(1)设村运往仓库吨肥料,村运肥料需要的费用为元;村运肥料需要的费用为元.
①写出、与的函数关系式,并求出的取值范围;
②试讨论、两村中,哪个村的运费较少?
(2)考虑到村的经济承受能力,村的运输费用不得超过4830元,设两村的总运费为元,怎样调运可使总运费最少?
17、(10分)为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,我国启动了“全国亿万学生阳光体育运动”短跑运动可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题.
(1)请根据图中信息,补齐下面的表格;
(2)从图中看,小明与小亮哪次的成绩最好?
(3)分别计算他们的平均数和方差,若你是他们的教练,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议?
18、(10分)如图,在Rt△ABC中,∠C=90°,以点B为圆心,以适当的长为半径画弧,与∠ABC的两边相交于点E、F,分别以点E和点F为圆心,以大于EF的长为半径画弧,两弧相交于点M,作射线BM交AC于点D;若∠ABC=2∠A,证明:AD=2CD.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系中,点,射线轴,直线交线段于点,交轴于点,是射线上一点.若存在点,使得恰为等腰直角三角形,则的值为_______.
20、(4分)某公司测试自动驾驶技术,发现移动中汽车“”通信中每个数据包传输的测量精度大约为0.0000018秒,请将数据0.0000018用科学计数法表示为__________.
21、(4分)因式分解:3x3﹣12x=_____.
22、(4分)解分式方程时,设,则原方程化为关于的整式方程是__________.
23、(4分)若,则的值是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元,设小明快递物品x千克.
(1)根据题意,填写下表:
(2)设甲快递公司收费y1元,乙快递公司收费y2元,分别写出y1,y2关于x的函数关系式;
(3)当x>3时,小明应选择哪家快递公司更省钱?请说明理由.
25、(10分)问题提出:
(1)如图1,在中,,点D和点A在直线的同侧,,,,连接,将绕点A逆时针旋转得到,连接(如图2),可求出的度数为______.
问题探究:
(2)如图3,在(1)的条件下,若,,且, ,
①求的度数.
②过点A作直线,交直线于点E,.请求出线段的长.
26、(12分)已知:如图,梯形ABCD中,AD∥BC,∠B=60°,∠C=30°,AD=4,BC=10.求:梯形两腰AB、CD的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据二次根式的加法法则判断A、B;根据二次根式的乘法法则判断C;根据二次根式的除法法则判断D.
【详解】
A、不是同类二次根式,不能合并,故本选项错误;
B、不能合并,故本选项错误;
C、故本选项正确;
D、故本选项错误;
故选:C.
本题考查了二次根式的运算,掌握运算法则是解题的关键.
2、B
【解析】
∵函数(y=kx+b)中y随x增大而减小,
∴k<0,
∵只有B选项k=-2<0,其它选项都大于0,
∴B选项是正确.
故选B.
3、A
【解析】
根据平行四边形的判定方法依次判定各项后即可解答.
【详解】
选项A,AB∥CD,AD=BC,一组对边平行,另一组对边相等的四边形不一定是平行四边形,选项A不能够判定四边形ABCD是平行四边形;
选项B,AB=CD,AB∥CD,一组对边平行且相等的四边形是平行四边形,选项B能够判定四边形ABCD是平行四边形;
选项C,AB=CD,AD=BC,两组对边分别相等的四边形是平行四边形,选项C能够判定四边形ABCD是平行四边形;
选项D,AC与BD互相平分,对角线互相平分的四边形是平行四边形,选项D能够判定四边形ABCD是平行四边形.
故选A.
本题考查了平行四边形的判定方法,熟练运用判定方法是解决问题的关键.
4、D
【解析】
根据,可得,再把AB的长代入可以计算出CB的长.
【详解】
解:∵csB=,
∴BC=AB•csB=6×=1.
故选:D.
此题主要考查了锐角三角函数的定义,关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦.
5、A
【解析】
根据对称性确定E、F、G、H都在菱形的边上,由于点P在BO上与点P在OD上求S1和S1的方法不同,因此需分情况讨论,由S1=S1和S1+S1=8可以求出S1=S1=2.然后在两种情况下分别建立关于x的方程,解方程,结合不同情况下x的范围确定x的值.
【详解】
①当点P在BO上,0<x≤1时,如图1所示.
∵四边形ABCD是菱形,AC=2,BD=2,
∴AC⊥BD,BO=BD=1,AO=AC=1,
且S菱形ABCD=BD•AC=8.
∴tan∠ABO==.
∴∠ABO=60°.
在Rt△BFP中,
∵∠BFP=90°,∠FBP=60°,BP=x,
∴sin∠FBP=.
∴FP=x.
∴BF=.
∵四边形PFBG关于BD对称,
四边形QEDH与四边形PEBG关于AC对称,
∴S△BFP=S△BGP=S△DEQ=S△DHQ.
∴S1=2S△BFP
=2××x•
=x1.
∴S1=8-x1.
②当点P在OD上,1<x≤2时,如图1所示.
∵AB=2,BF=,
∴AF=AB-BF=2.
在Rt△AFM中,
∵∠AFM=90°,∠FAM=30°,AF=2-.
∴tan∠FAM=.
∴FM=(2-).
∴S△AFM=AF•FM
=(2-)•(2-)
=(2-)1.
∵四边形PFBG关于BD对称,
四边形QEDH与四边形FPBG关于AC对称,
∴S△AFM=S△AEM=S△CHN=S△CGN.
∴S1=2S△AFM
=2×(2-)1
=(x-8)1.
∴S1=8-S1=8-(x-8)1.
综上所述:
当0<x≤1时,S1=x1,S1=8-x1;
当1<x≤2时,S1=8-(x-8)1,S1=(x-8)1.
当点P在BO上时,0<x≤1.
∵S1=S1,S1+S1=8,
∴S1=2.
∴S1=x1=2.
解得:x1=1,x1=-1.
∵1>1,-1<0,
∴当点P在BO上时,S1=S1的情况不存在.
当点P在OD上时,1<x≤2.
∵S1=S1,S1+S1=8,
∴S1=2.
∴S1=(x-8)1=2.
解得:x1=8+1,x1=8-1.
∵8+1>2,1<8-1<2,
∴x=8-1.
综上所述:若S1=S1,则x的值为8-1.
故选A.
本题考查了以菱形为背景的轴对称及轴对称图形的相关知识,考查了菱形的性质、特殊角的三角函数值等知识,还考查了分类讨论的思想.
6、C
【解析】
根据等腰直角三角形的性质可得AP⊥BC,AP=PC,∠EAP=∠C=45°,根据同角的余角相等求出∠APE=∠CPF,然后利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,判定①正确,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,判定②正确;根据等腰直角三角形的斜边等于直角边的倍表示出EF,可知EF随着点E的变化而变化,判定④错误,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半,判定③正确
【详解】
如图,连接EF,
∵AB=AC,∠BAC=90°,点P是BC的中点,
∴AP⊥BC,AP=PC,∠EAP=∠C=45°,
∴∠APF+∠CPF=90°,
∵∠EPF是直角,
∴∠APF+∠APE=90°,
∴∠APE=∠CPF,;
在△APE和△CPF中,
,
∴△APE≌△CPF(ASA),
∴AE=CF,故①正确;
∴△EFP是等腰直角三角形,故②正确;
根据等腰直角三角形的性质,EF=PE,
所以,EF随着点E的变化而变化,只有当点E为AB的中点时,EF=PE=AP,在其它位置EF≠AP,故④错误;
∵△APE≌△CPF,
∴S△APE=S△CPF,
∴S四边形AEPF=S△APF+S△APE=S△APF+S△CPF=S△APC=S△ABC,
∴2S四边形AEPF=S△ABC
故③正确,
综上所述,正确的结论有①②③共3个.
故选C.
本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE≌△CPF是解题的关键,也是本题的突破点.
7、A
【解析】
试题分析:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.
设AB=AD=x.
又∵AD∥BC,
∴四边形AEFD是矩形形,
∴AD=EF=x.
在Rt△ABE中,∠ABC=60°,则∠BAE=30°,
∴BE=AB=x,
∴DF=AE==x,
在Rt△CDF中,∠FCD=30°,则CF=DF•ct30°=x.
又BC=6,
∴BE+EF+CF=6,即x+x+x=6,
解得 x=2
∴△ACD的面积是:AD•DF=x×x=×22=.
故选A.
考点:1.勾股定理2.含30度角的直角三角形.
8、B
【解析】
先延长AB,D'A'交于点G,根据三角形外角性质以及等腰三角形的判定,即可得到BC=BG=BA,设AE=x=A'E,则BE=2−x,GE=4−x,A'G=2x,在Rt△A'GE中,依据勾股定理可得A'E2+GE2=A'G2,进而得出方程,解方程即可.
【详解】
解:如图所示,延长AB,D'A'交于点G,
∵A'E⊥AB,∠EA'C=∠A=120°,
∴∠BGC=120°﹣90°=30°,
又∵∠ABC=60°,
∴∠BCG=60°﹣30°=30°,
∴∠BGC=∠BCG=30°,
∴BC=BG=BA,
设AE=x=A'E,则BE=AB﹣AE=2﹣x,A'G=2x,
∴GE=BG+BE=2+2﹣x=4﹣x,
∵Rt△A'GE中,A'E2+GE2=A'G2,
∴x2+(4﹣x)2=(2x)2,
解得:x=﹣2+2,(负值已舍去)
∴AE=2﹣2,
故选B.
本题主要考查了折叠问题,等腰三角形的判定,菱形的性质,解一元二次方程以及勾股定理的运用;解决问题的关键是作辅助线构造直角三角形,依据勾股定理列方程求解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1 .
【解析】
试题分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出ED=BC=1.故答案为1.
考点: 三角形中位线定理.
10、
【解析】
利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.
【详解】
∵k=1>0,
∴在每个象限内y随x的增大而减小,
又∵当x=1时,y=1,
当x=2时,y=5,
∴当1<x<2时,5<y<1.
故答案为.
本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.
11、x≤
【解析】
∵代数式在实数范围内有意义,
∴,解得:.
故答案为:.
12、21
【解析】
先利用勾股定理求出斜边为130米,根据数的间距可求出树的棵数.
【详解】
∵斜坡的水平距离为120米,高50米,
∴斜坡长为米,
又∵树的间距为6.5,
∴可种130÷6.5+1=21棵.
此题主要考察勾股定理的的应用.
13、144(1﹣x)2=1.
【解析】
设平均每月产值降低的百分率是x,那么2月份的产值为144(1-x)万元,3月份的产值为144(1-x)2万元,然后根据3月份的产值为1万元即可列出方程.
【详解】
设平均每月产值降低的百分率是x,则2月份的产值为144(1﹣x)万元,3月份的产值为144(1﹣x)2万元,
根据题意,得144(1﹣x)2=1.
故答案为144(1﹣x)2=1.
本题考查由实际问题抽象出一元二次方程-求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到3月份的产值的等量关系是解决本题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1) k≤5 ;(2) 3.
【解析】
(1)根据判别式的意义得到△=22-4(k-4)≥0,然后解不等式即可;
(2)利用方程解的定义得到k2+3k=4,再变形得到2k2+6k-5=2(k2+3k)-5,然后利用整体代入的方法计算.
【详解】
(1)∵有实数根,
∴Δ≥0
即.
∴k≤5
(2)∵k是方程的一个根,
∴
∴
=3
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
15、(1)右,2,上,1;(2)(2,1);(1)是轴对称图形,对称轴是:y=x+1和y=﹣x+2;(4)x<2或x>2.
【解析】
(1)根据图象平移的法则即可解答;
(2)根据平移的方法,函数y=﹣的中心原点平移后的点就是对称中心;
(1)图象平移后与原来的直线y=x和y=-x平行,并且经过对称中心,利用待定系数法即可求解;
(4)把已知的函数y=变形成的形式,类比反比例函数性质即可解答.
【详解】
解:(1)函数y=﹣+1图象是由反比例函数y=﹣图象向右平移 2个单位,再向上平移1个单位得到的.
故答案为:右2上1.
(2)y=﹣+1的图象是中心对称图形,对称中心是(2,1).
故答案为:(2,1).
(1)该函数图象是轴对称图形.
∵y=﹣的图象是轴对称图形,对称轴是直线y=x,y=﹣x.
设y=﹣+1对称轴是y=x+b,把(2,1)代入得:1=2+b,
∴b=1,
∴对称轴是y=x+1;
设y=﹣+1对称轴是y=﹣x+c,把(2,1)代入得:1=﹣2+c,
∴c=2.
∴对称轴是y=﹣x+2.
故答案为:y=x+1和y=﹣x+2.
(4)对于函数y=,变形得:
y===,
则其对称中心是(2,).
则当x<2或x>2时y随x的增大而增大.
故答案为:x<2或x>2
本题考查了反比例函数的图象与性质,以及待定系数法求函数的解析式,正确理解图象平移的方法是关键.
16、(1)①见解析;②见解析;(2)见解析.
【解析】
(1)①A村运肥料需要的费用=20×运往C仓库肥料吨数+25×运往D仓库肥料吨数;
B村运肥料需要的费用=15×运往C仓库肥料吨数+18×运往D仓库肥料吨数;根据吨数为非负数可得自变量的取值范围;
②比较①中得到的两个函数解析式即可;
(2)总运费=A村的运费+B村的运费,根据B村的运费可得相应的调运方案.
【详解】
解:(1)①;
;
;
②当时 即
两村运费相同;
当时 即
村运费较少;
当时 即
村运费较少;
(2)
即
当取最大值50时,总费用最少
即运吨,运吨;村运吨,运吨.
综合考查了一次函数的应用;根据所给未知数得到运往各个仓库的吨数是解决本题的易错点.
17、(1)见解析;(2)小明第4次成绩最好,小亮第3次成绩最好;(3)小明平均数:13.3,方差为:0.004;小亮平均数为:13.3,方差为:0.02;建议小明加强锻炼,提高爆发力,提高短跑成绩;建议小亮总结经验,找出成绩忽高忽低的原因,在稳定中求提高.
【解析】
(1)、(2),根据图形,分别找出小明第4次成绩和小亮第2次的成绩,进而补全表格,再结合统计图找出小明和小亮的最好成绩即可;
(3)根据平均数和方差的计算公式分别求出小明和小亮的平均成绩和方差即可.
【详解】
(1)根据统计图补齐表格,如下:
(2)由图可得,小明第4次成绩最好,小亮第3次成绩最好.
(3)小明的平均成绩为: (13.3+13.4+13.3+13.2+13.3)=13.3(秒),
方差为:×[(13.3-13.3)+(13.4-13.3) +(13.3-13.3) +(13.2-13.3) +(13.3-13.3) ]=0.004;
小亮的平均成绩为: (13.2+13.4+13.1+13.5+13.3)÷5=13.3(秒),
方差为×[(13.2-13.3) +(13.4-13.3) +(13.1-13.3) +(13.5-13.3) +(13.3-13.3) ]=0.02.
从平均数看,两人的平均水平相等;从方差看,小明的成绩较稳定,小亮的成绩波动较大.建议小明加强锻炼,提高爆发力,提高短跑成绩;建议小亮总结经验,找出成绩忽高忽低的原因,在稳定中求提高.
此题考查折线统计图,方差,算术平均数,解题关键在于掌握运算法则,看懂图中数据
18、详见解析
【解析】
根据角平分线的画法和性质解答即可.
【详解】
证明:由题意可得:BD是∠ABC的角平分线,
∵∠ABC=2∠A,在Rt△ABC中,∠C=90°,
∴∠ABC=60°,∠A=30°,
∴∠CBD=∠DBA=30°,
∴BD=2CD,
∵∠DBA=∠A=30°,
∴AD=BD,
∴AD=2CD.
本题考查了基本作图,关键是根据角平分线的画法和性质证明.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3或6
【解析】
先表示出A、B坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b即可.
【详解】
解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,,
∴∠DBC=∠BAO,
由直线交线段OC于点B,交x轴于点A可知OB=b,OA=b,
∵点C(0,6),
∴OC=6,
∴BC=6-b,
在△DBC和△BAO中,
∴△DBC≌△BAO(AAS),
∴BC=OA,
即6-b=b,
∴b=3;
②当∠ADB=90°时,如图2,作AF⊥CE于F,
同理证得△BDC≌△DAF,
∴CD=AF=6,BC=DF,
∵OB=b,OA=b,
∴BC=DF=b-6,
∵BC=6-b,
∴6-b=b-6,
∴b=6;
③当∠DAB=90°时,如图3,
作DF⊥OA于F,
同理证得△AOB≌△DFA,
∴OA=DF,
∴b=6;
综上,b的值为3或6,
故答案为3或6.
本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.
20、
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
.
故答案为:.
本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
21、3x(x+2)(x﹣2)
【解析】
先提公因式3x,然后利用平方差公式进行分解即可.
【详解】
3x3﹣12x
=3x(x2﹣4)
=3x(x+2)(x﹣2),
故答案为3x(x+2)(x﹣2).
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
22、
【解析】
根据换元法,可得答案.
【详解】
解:设,则原方程化为,
两边都乘以y,得:,
故答案为:.
本题考查了解分式方程,利用换元法是解题关键.
23、1
【解析】
利用完全平方公式变形,原式=,把代入计算即可.
【详解】
解:
把代入得:
原式=.
故答案为:1.
本题考查的是求代数式的值,把原式利用完全平方公式变形是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)11,19,52,1;(2);y2=16x+3;(3)当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.
【解析】
(1)根据甲、乙公司的收费方式,求出y值即可;
(2)根据甲、乙公司的收费方式结合数量关系,找出y1、y2(元)与x(千克)之间的函数关系式;
(3)x>3,分别求出y1>y2、y1=y2、y1<y2时x的取值范围,综上即可得出结论.
【详解】
解:(1)当x=0.5时,y甲=22×0.5=11;
当x=1时,y乙=16×1+3=19;
当x=3时,y甲=22+15×2=52;
当x=3时,y甲=22+15×3=1.
故答案为:11;19;52;1.
(2)当0<x≤1时,y1=22x;
当x>1时,y1=22+15(x-1)=15x+2.
∴
y2=16x+3(x>0);
(3)当x>3时,
当y1>y2时,有15x+2>16x+3,
解得:x<3;
当y2=y2时,有15x+2=16x+3,
解得:x=3;
当y1<y2时,有15x+2<16x+3,
解得:x>3.
∴当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.
本题考查了一次函数的应用,解题的关键是:(1)根据甲、乙公司的收费方式求出y值;(2)根据甲、乙公司的收费方式结合数量关系,找出、(元)与x(千克)之间的函数关系式;(3)分情况考虑>、=、<时x的取值范围.
25、(1)30°;(2)①;②
【解析】
(1)由旋转的性质,得△ABD≌,则,然后证明是等边三角形,即可得到;
(2)①将绕点A逆时针旋转,使点B与点C重合,得到,连接.与(1)同理证明为等边三角形,然后利用全等三角形的判定和性质,即可得到答案;
②由解直角三角形求出,再由等边三角形的性质,即可求出答案.
【详解】
解:(1)根据题意,∵,,
∴是等腰直角三角形,
∴,
∵,
∴,
由旋转的性质,则△ABD≌,
∴,,,
∴,
∴是等边三角形,
∴,
∵,,
∴≌,
∴,
∴;
(2)①,
.
如图1,将绕点A逆时针旋转,使点B与点C重合,得到,连接.
,
,
,
,
,
.
.
,
为等边三角形,
,
,
,
,
.
②如图2,由①知,,
在中,,
.
是等边三角形,
,
,
.
本题考查了解直角三角形,旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰直角三角形的性质,以及三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确利用旋转模型进行解题.
26、AB=3,CD=3.
【解析】
平移一腰,得到平行四边形和30°的直角三角形,根据它们的性质进行计算.
【详解】
解:作DE∥AB交BC于点E,则四边形ABED是平行四边形.
∴AB=DE,AD=BE,∠DEC=∠B=60°,
∵∠C=30°,
∴∠EDC=180°-60°-30°=90°,
∵CE=BC-BE=BC-AD=6,
∴DE=3,CD=3,
即AB=3,CD=3.
故答案为:AB=3,CD=3.
本题考查与梯形有关的问题,平移一腰是梯形中常见的辅助线,再根据平行四边形的性质和三角形的性质进行分析.
题号
一
二
三
四
五
总分
得分
批阅人
快递物品重量(千克)
0.5
1
3
4
…
甲公司收费(元)
22
…
乙公司收费(元)
11
51
67
…
相关试卷
这是一份2024年江苏省宜兴市外国语学校九上数学开学联考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省无锡市宜兴市丁蜀区数学九上开学统考模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省无锡市周铁区联盟2023-2024学年数学九上期末检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列语句中,正确的是,如图,将的三边扩大一倍得到,方程的根是等内容,欢迎下载使用。