终身会员
搜索
    上传资料 赚现金

    2024年江西省吉安市吉水县九年级数学第一学期开学达标检测试题【含答案】

    立即下载
    加入资料篮
    2024年江西省吉安市吉水县九年级数学第一学期开学达标检测试题【含答案】第1页
    2024年江西省吉安市吉水县九年级数学第一学期开学达标检测试题【含答案】第2页
    2024年江西省吉安市吉水县九年级数学第一学期开学达标检测试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年江西省吉安市吉水县九年级数学第一学期开学达标检测试题【含答案】

    展开

    这是一份2024年江西省吉安市吉水县九年级数学第一学期开学达标检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如果P点的坐标为(a,b),它关于y轴的对称点为P1,P1关于x轴的对称点为P2,已知P2的坐标为(-2,3),则点P的坐标为( )
    A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)
    2、(4分)如图,,要根据“”证明,则还要添加一个条件是( )
    A.B.C.D.
    3、(4分)已知关于x的一元二次方程x2+2x+k=0有实数根,则k的取值范围是( )
    A.k≥1B.k≤4C.k<1D.k≤1
    4、(4分)若有意义,则( )
    A.a≤B.a<﹣1C.a≥﹣1D.a>﹣2
    5、(4分)若=,则的值是()
    A.B.C.D.
    6、(4分)下列图形中是中心对称图形,但不是轴对称图形的是( )
    A.B.C.D.
    7、(4分)2013年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是( )
    A.众数是6B.极差是2C.平均数是6D.方差是4
    8、(4分)已知点的坐标为,则点在第( )象限
    A.一B.二C.三D.四
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)把直线y=x-1向下平移后过点(3,-2),则平移后所得直线的解析式为________.
    10、(4分)若的整数部分是a,小数部分是b,则______.
    11、(4分)在Rt△ABC中,∠C=90°,AC=3,BC=1.作一边的垂直平分线交另一边于点D,则CD的长是______.
    12、(4分)把化为最简二次根式,结果是_________.
    13、(4分)如图,在四边形ABCD中,AD//BC,E、F分别是AB、CD的中点,若AD=3,BC=5,则EF=____________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知反比例函数y=的图象与一次函数y=ax+b的图象交于点A(1,4)和点B(m,﹣2),
    (1)求这两个函数的关系式;
    (2)观察图象,写出使得>ax+b成立的自变量x的取值范围;
    (3)过点A作AC⊥x轴,垂足为C,在平面内有点D,使得以A,O,C,D四点为顶点的四边形为平行四边形,直接写出符合条件的所有D点的坐标.
    15、(8分)解决问题.
    学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.
    (1)求A,B两种型号足球的销售价格各是多少元/个?
    (2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?
    16、(8分)垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整
    (收集数据)
    甲班15名学生测试成绩统计如下:(满分100分)
    68,72,89,85,82,85,74,92,80,85,78,85,69,76,80
    乙班15名学生测试成绩统计如下:(满分100分)
    86,89,83,76,73,78,67,80,80,79,80,84,82,80,83
    (整理数据)
    按如下分数段整理、描述这两组样本数据
    在表中,a= ,b= .
    (分析数据)
    (1)两组样本数据的平均数、众数、中位数、方差如下表所示:
    在表中:x= ,y= .
    (2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有 人
    (3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.
    17、(10分)如图,一次函数的图像过点和点,以线段为边在第一象限内作等腰直角△ABC,使
    (1)求一次函数的解析式;
    (2)求出点的坐标
    (3)点是轴上一动点,当最小时,求点的坐标.
    18、(10分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
    已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
    (1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
    (2)如果先进行精加工,然后进行粗加工.
    ①试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;
    ②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)小刚从家到学校的路程为2km,其中一段是lkm的平路,一段是lkm的上坡路.已知小刚在上坡、平路和下坡的骑车速度分别为akm/h,2akm/h,3akm/h,则小刚骑车从家到学校比从学校回家花费的时间多_____h.
    20、(4分)如图,矩形ABCD中,对角线AC与BD相交于点O,AB=3,BC=4,则△AOB的周长为_____.
    21、(4分)如图,ABC的周长为16,⊙O与BC相切于点D,与AC的延长线相切于点E,与AB的延长线相切于点F,则AF的长为_____.
    22、(4分)如图,Rt△中,分别是的中点,平分,交于点.若,,则的长是________.
    23、(4分)一次函数y=(2m-6)x+5中,y随x的增大而减小,则m的取值范围是 ________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在四边形ABCD中,AB=AC,BD=DC,BE//DC,请仅用无刻度的直尺按下列要求画图.
    (1)在图1中,画一个以AB为边的直角三角形;
    (2)在图2中,画一个菱形.
    25、(10分)已知:线段a,c.
    求作:△ABC,使BC=a,AB=c,∠C=90°
    26、(12分)分解因式
    (1)
    (2)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    直接利用关于x,y轴对称点的性质结合P2的坐标得出点P的坐标.
    【详解】
    ∵P点的坐标为(a,b),它关于y轴的对称点为P1,P1关于x轴的对称点为P2,P2的坐标为(-2,3),
    ∴P1的坐标为:(-2,-3),故点P的坐标为:(2,-3).
    故选B.
    考查了关于x,y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.
    2、A
    【解析】
    根据垂直定义求出∠CFD=∠AEB=90°,再根据得出,再根据全等三角形的判定定理推出即可.
    【详解】
    添加的条件是AB=CD;理由如下:
    ∵AE⊥BC,DF⊥BC,
    ∴∠CFD=∠AEB=90°,
    ∵,
    ∴,
    在Rt△ABE和Rt△DCF中,
    ∴Rt△ABE=R△DCF(HL)
    所以A选项是正确的.
    本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.
    3、D
    【解析】
    由一元二次方程有实数根可得△=b2﹣4ac=22﹣4×k×1≥0,解不等式即可.
    【详解】
    ∵△=b2﹣4ac=22﹣4×k×1≥0,
    解得:k≤1,
    故选D.
    【点评】
    本题考查了一元二次方程根的判别式的应用,解此类题时切记不要忽略一元二次方程二次项系数不为零这一隐含条件.
    4、C
    【解析】
    直接利用二次根式的定义计算得出答案.
    【详解】
    若 有意义,则a+1≥0,
    解得:a≥﹣1.
    故选:C.
    此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
    5、A
    【解析】
    先设a=2k,则b=5k,然后将它们分别代入,计算即可求出其值即可.
    【详解】
    解:∵=,
    设a=2k,则b=5k,
    ∴=.
    故选A.
    本题考查了比例的基本性质,比较简单,关键是巧设未知数,可使计算简便.
    6、D
    【解析】
    将一个图形沿着一条直线翻折后两侧能够完全重合,这样的图形是轴对称图形;将一个图形绕着一个点旋转180°后能与自身完全重合,这样的图形是中心对称图形,根据定义依次判断即可得到答案.
    【详解】
    A、是轴对称图形,是中心对称图形;
    B、是轴对称图形,是中心对称图形;
    C、是轴对称图形,不是中心对称图形;
    D、不是轴对称图形,是中心对称图形,
    故选:D.
    此题考查轴对称图形的定义,中心对称图形的定义,熟记定义并掌握图形的特点是解题的关键.
    7、D
    【解析】
    众数是一组数据中出现次数最多的数,极差是数据中最大的与最小的数据的差,平均数是所有数据的和除以数据的个数,分别根据以上定义可分别求出众数,极差和平均数,然后根据方差的计算公式进行计算求出方差,即可得到答案.
    【详解】
    解:这组数据6出现了6次,最多,所以这组数据的众数为6;
    这组数据的最大值为7,最小值为5,所以这组数据的极差=7﹣5=2;
    这组数据的平均数=(5×2+6×6+7×2)=6;
    这组数据的方差S2= [2•(5﹣6)2+6•(6﹣6)2+2•(7﹣6)2]=0.4;
    所以四个选项中,A、B、C正确,D错误.
    故选:D.
    本题考查了方差的定义和意义:数据x1,x2,…xn,其平均数为,则其方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2];方差反映了一组数据在其平均数的左右的波动大小,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.也考查了平均数和众数以及极差的概念.
    8、B
    【解析】
    应先判断出所求的点的横纵坐标的符号,进而判断其所在的象限.
    【详解】
    解:∵点的坐标为
    ∴点在第二象限
    故选:B
    本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点.牢记四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、y=x-2
    【解析】
    解:设直线向下平移了h个单位,y=x-2-h,过(3,-2),所以-2=3-2-h
    所以h=-4
    所以y=x-2
    故答案为:y=x-2.
    本题考查一次函数图象左右平移,上下平移方法,口诀“左加右减,上加下减”.
    y=kx+b 左移2个单位,y=k(x+2)+b;
    y=kx+b 右移2个单位,y=k(x-2)+b;
    y=kx+b 上移2个单位,y=kx+b+2;
    y=kx+b 下移2个单位,y=kx+b-2.
    10、1.
    【解析】
    若的整数部分为a,小数部分为b,
    ∴a=1,b=,
    ∴a-b==1.
    故答案为1.
    11、或
    【解析】
    分两种情况:①当作斜边AB的垂直平分线PQ,与BC交于点D时,连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;②当作直角边的垂直平分线PQ,与斜边AB交于点D时,连接CD,根据直角三角形斜边上的中线性质求得CD.
    【详解】
    解:当作斜边AB的垂直平分线PQ,与BC交于点D时,连接AD.
    ∵PQ垂直平分线段AB,
    ∴DA=DB,设DA=DB=x,
    在Rt△ACD中,∠C=90°,AD2=AC2+CD2,
    ∴x2=32+(1-x)2,
    解得x=,
    ∴CD=BC-DB=1-=;
    当作直角边的垂直平分线PQ或P′Q′,都与斜边AB交于点D时,连接CD,
    则D是AB的中点,
    ∴CD=AB=,
    综上可知,CD=或.
    故答案为:或.
    本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,直角三角形斜边上的中线等于斜边的一半,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
    12、
    【解析】
    直接利用二次根式的性质化简求出答案.
    【详解】

    故答案为.
    本题考查了二次根式的性质与化简,正确开平方是解题的关键.
    13、1
    【解析】
    由题意可知EF为梯形ABCD的中位线,根据梯形中位线等于上底加下底的和的一半可得答案.
    【详解】
    ∵四边形ABCD中,AD//BC
    ∴四边形ABCD为梯形,
    ∵E、F分别是AB、CD的中点
    ∴EF是梯形ABCD的中位线
    ∴EF===1
    故答案为:1.
    本题考查梯形的中位线,熟练掌握梯形中位线的性质是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(2)y=2x+2;(2)x<﹣2或0<x<2;(3)(0,﹣4),(0,4)或(2,4).
    【解析】
    (2)首先将A点坐标代入反比例函数,进而计算出k的值,再将B点代入反比例函数的关系式,求得参数m的值,再利用待定系数法求解一次函数的解析式.
    (2)根据题意要使>ax+b则必须反比例函数的图象在一次函数之上,观察图象即可得到x的取值范围.
    (3)首先写出A、C的坐标,再根据对角为OC、OA、AC进行分类讨论.
    【详解】
    解:(2)将A(2,4)代入y=,得:4=k,
    ∴反比例函数的关系式为y=;
    当y=﹣2时,﹣2=,解得:m=﹣2,
    ∴点B的坐标为(﹣2,﹣2).
    将A(2,4),B(﹣2,﹣2)代入y=ax+b,得: ,
    解得:,
    ∴一次函数的关系式为y=2x+2.
    (2)观察函数图象,可知:当x<﹣2或0<x<2时,反比例函数图象在一次函数图象上方,
    ∴使得>ax+b成立的自变量x的取值范围为x<﹣2或0<x<2.
    (3)∵点A的坐标为(2,4),
    ∴点C的坐标为(2,0).
    设点D的坐标为(c,d),分三种情况考虑,如图所示:
    ①当OC为对角线时, ,
    解得: ,
    ∴点D2的坐标为(0,﹣4);
    ②当OA为对角线时,
    解得:
    ∴点D2的坐标为(0,4);
    ③当AC为对角线时, ,
    解得: ,
    ∴点D3的坐标为(2,4).
    综上所述:以A,O,C,D四点为顶点的四边形为平行四边形时,点D的坐标为(0,﹣4),(0,4)或(2,4).
    本题主要考查反比例函数和一次函数的综合性问题,这类题目是考试的热点问题,综合性比较强,但是也很容易,应当熟练掌握.
    15、(1)A,B两种型号足球的销售价格各是50元/个,90元/个.(2)见解析
    【解析】
    试题分析:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元列出方程组解答即可;
    (2)设购买A型号足球x个,则B型号足球(20﹣x)个,根据费用不低于1300元,不超过1500元,列出不等式组解答即可.
    解:(1)设A,B两种型号足球的销售价格各是a元/个,b元/个,由题意得
    解得
    答:A,B两种型号足球的销售价格各是50元/个,90元/个.
    (2)设购买A型号足球x个,则B型号足球(20﹣x)个,由题意得

    解得7.5≤x≤12.5
    ∵x是整数,
    ∴x=8、9、10、11、12,
    有5种购球方案:
    购买A型号足球8个,B型号足球12个;
    购买A型号足球9个,B型号足球11个;
    购买A型号足球10个,B型号足球10个;
    购买A型号足球11个,B型号足球9个;
    购买A型号足球12个,B型号足球8个.
    16、【整理数据】:7,4;【分析数据】(1)85,80;(2)40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,见解析.
    【解析】
    由收集的数据即可得;
    (1)根据众数和中位数的定义求解可得;
    (2)用总人数乘以乙班样本中合格人数所占比例可得;
    (3)甲、乙两班的方差判定即可.
    【详解】
    解:乙班75.5~80.5分数段的学生数为7,80.5~85.5分数段的学生数为4,
    故a=7,b=4,
    故答案为:7,4;
    (1)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80,
    众数是x=85,
    67,73,76,78,79,80,80,80,80,82,83,83,84,86,89,
    中位数是y=80,
    故答案为:85,80;
    (2)60×=40(人),
    即合格的学生有40人,
    故答案为:40;
    (3)乙班的学生掌握垃圾分类相关知识的整体水平较好,
    ∵甲班的方差>乙班的方差,
    ∴乙班的学生掌握垃圾分类相关知识的整体水平较好.
    本题考查了频数分布直方图,众数,中位数,正确的理解题意是解题的关键.
    17、(1);(2)的坐标是;(3).
    【解析】
    (1)根据待定系数法确定函数解析式即可;
    (2)作CD⊥y轴于点D,由全等三角形的判定定理可得出△ABO≌△CAD,由全等三角形的性质可知OA=CD,故可得出C点坐标;
    (3)求得B点关于y轴的对称点B′的坐标,连接B′C与y轴的交点即为所求的P点,由B′、C坐标可求得直线B′C的解析式,则可求得P点坐标.
    【详解】
    解:
    设直线的解析式为:,
    把代入可得:,
    解得:
    所以一次函数的解析式为:;
    如图,作轴于点

    在与中



    则的坐标是;
    如图中,作点关于轴的对称点,连接交轴于,此时的值最小,


    把代入中,
    可得:,
    解得:,
    直线的解析式为,
    令,得到,
    .
    本题考查的是一次函数的综合题,根据待定系数法求一次函数的解析式、全等三角形的判定与性质,以及轴对称-最短距离,根据题意作出辅助线,构造出全等三角形是解答此题的关键.
    18、(1)应安排4天进行精加工,8天进行粗加工
    (2)①=
    ②安排1天进行精加工,9天进行粗加工,可以获得最多利润为元
    【解析】
    解:(1)设应安排天进行精加工,天进行粗加工,
    根据题意得
    解得
    答:应安排4天进行精加工,8天进行粗加工.
    (2)①精加工吨,则粗加工()吨,根据题意得
    =
    ②要求在不超过10天的时间内将所有蔬菜加工完,
    解得
    又在一次函数中,,
    随的增大而增大,
    当时,
    精加工天数为=1,
    粗加工天数为
    安排1天进行精加工,9天进行粗加工,可以获得最多利润为元.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    本题中需要注意的一点是:去时的上坡和下坡路与回来时的上坡和下坡路正好相反,平路路程、速度所用时间不变.题中的等量关系是:从家到学校的路程为2千米;去时上坡时间+平路时间=从家到学校的总时间;回时下坡时间+平路时间=从学校回家花费的时间,据此可列式求解.
    【详解】
    小刚骑车从家到学校比从学校回家花费的时间多:( )-()=-=h,
    故答案为:
    本题考查列代数式,解答本题的关键读懂题意,找出合适的数量关系.
    20、1
    【解析】
    由矩形的性质可得AC=BD,AO=CO,BO=DO,∠ABC=90°,由勾股定理可求AC=5,即可求△AOB的周长.
    【详解】
    ∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∠ABC=90°.
    ∵AB=3,BC=4,∴AC5,∴AO=BO,∴△AOB的周长=AB+AO+BO=3+5=1.
    故答案为:1.
    本题考查了矩形的性质,勾股定理,求出AO=BO的长是本题的关键.
    21、1
    【解析】
    根据切线长定理得出AF=AE,CE=CD,BF=BD,再根据△ABC的周长等于16得出AF+AE=16,即可求出AE.
    【详解】
    解:如图,
    ∵AB、AC的延长线与圆分别相切于点E、F,
    ∴AF=AE,
    ∵圆O与BC相切于点D,
    ∴CE=CD,BF=BD,
    ∴BC=DC+BD=CE+BF,
    ∵△ABC的周长等于16,
    ∴AB+AC+BC=16,
    ∴AB+AC+CE+BF=16,
    ∴AF+AE=16,
    ∴AF=1.
    故答案为1
    此题考查了切线长定理,掌握切线长定理即从圆外一点引圆的两条切线,切线长相等是本题的关键.
    22、1;
    【解析】
    依据题意,DE是△ABC的中位线,则DE=5,根据平分线和角平分线的性质,易证△BDF是等腰三角形,BD=DF,D是BC中点,DF=,由EF=DE-DF,即可解出EF.
    【详解】
    ∵D、E点是AC和BC的中点,
    则DE是中位线,
    ∴DE∥AB,且DE=AB=5
    ∴∠ABF=∠BFD
    又BF平分∠ABC,
    ∴∠ABF=∠FBD
    ∴∠BFD=∠FBD
    ∴△FDB是等腰三角形
    ∴DF=BD
    又∵D是BC中点,
    ∴BD=3
    ∴DF=3
    ∴EF=DE-DF=5-3=1
    故本题答案为1.
    本题考查了平分线的性质、角平分线的性质、等腰三角形的判定及性质以及中位线的性质,熟练掌握相关知识点事解决本题的关键.
    23、m<1
    【解析】
    解:∵y随x增大而减小,
    ∴k<0,
    ∴2m-6<0,
    ∴m<1.
    二、解答题(本大题共3个小题,共30分)
    24、(1)作图见解析 (2)作图见解析
    【解析】
    (1)连接AD、BC相交于点O,Rt△AOB即为所求;
    (2)连接AD交BE于F,连接CF,四边形BFCD即为所求.
    【详解】
    (1)连接AD、BC相交于点O,Rt△AOB即为所求;
    (2)连接AD交BE于F,连接CF,四边形BFCD即为所求.
    本题考查了尺规作图的问题,掌握直角三角形和菱形的性质是解题的关键.
    25、详见解析
    【解析】
    过直线m上点C作直线n⊥m,再在m上截取CB=a,然后以B点为圆心,c为半径画弧交直线n于A,则△ABC满足条件.
    【详解】
    解:如图,△ABC为所作.
    本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
    26、(1);(2)
    【解析】
    (1)先提取-1,然后利用完全平方公式进行因式分解;(2)先提取(a-5),然后利用平方差公式进行因式分解.
    【详解】
    解:(1)
    =
    =
    (2)
    =
    =
    =
    本题考查提公因式和公式法因式分解,掌握因式分解的技巧正确计算是本题的解题关键.
    题号





    总分
    得分
    组别
    班级
    65.6~70.5
    70.5~75.5
    75.5~80.5
    80.5~85.5
    85.5~90.5
    90.5~95.5
    甲班
    2
    2
    4
    5
    1
    1
    乙班
    1
    1
    a
    b
    2
    0
    班级
    平均数
    众数
    中位数
    方差
    甲班
    80
    x
    80
    47.6
    乙班
    80
    80
    y
    26.2
    销售方式
    粗加工后销售
    精加工后销售
    每吨获利(元)
    1000
    2000

    相关试卷

    2024-2025学年江西省南昌市数学九年级第一学期开学达标检测模拟试题【含答案】:

    这是一份2024-2025学年江西省南昌市数学九年级第一学期开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年江西省吉安市吉水县九年级数学第一学期期末达标检测模拟试题含答案:

    这是一份2023-2024学年江西省吉安市吉水县九年级数学第一学期期末达标检测模拟试题含答案,共8页。

    江西省吉水县2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案:

    这是一份江西省吉水县2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案,共9页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map