2024年江西省新余市第一中学数学九上开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数与图象如图:则下列结论①k<0;②a>0;③不等式x+a
2、(4分)如图,在正方形ABCD中,△BPC是等边三角形,BP,CP的延长线分别交AD于点E,F,连接BD,DP,BD与CF交于点H.下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC,其中正确的结论是
A.①②③④B.②③C.①②④D.①③④
3、(4分)如图所示,四边形OABC是正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上一动点,则PA+PD的最小值为( )
A.2B.C.4D.6
4、(4分)二次根式中的取值范围是( )
A.B.C.D.
5、(4分)如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于( )
A.2B.3C.4D.6
6、(4分)如图,中,,,点在反比例函数的图象上,交反比例函数的图象于点,且,则的值为( )
A.B.C.D.
7、(4分)如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的边长分别为3,4,H为线段DF的中点,则BH的长为( )
A.5B.C.D.
8、(4分)下列命题是真命题的是( )
A.平行四边形的对角线相等
B.经过旋转,对应线段平行且相等
C.两组对角分别相等的四边形是平行四边形
D.两边相等的两个直角三角形全等
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若关于x的不等式组的解集为﹣<x<﹣6,则m的值是_____.
10、(4分)化简: .
11、(4分)若一个多边形的内角和与外角和之和是900°,则该多边形的边数是_____.
12、(4分)有五个面的石块,每个面上分别标记1,2,3,4,5,现随机投掷100次,每个面落在地面上的次数如下表,估计石块标记3的面落在地面上的概率是______.
13、(4分)如图,在平面直角坐标系中,已知顶点的坐标分别为,且是由旋转得到.若点在上,点在轴上,要使四边形为平行四边形,则满足条件的点的坐标为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.
(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法).
①作∠DAC的平分线AM;
②连接BE并延长交AM于点F;
③连接FC.
(2)猜想与证明:猜想四边形ABCF的形状,并说明理由.
15、(8分)解方程:请选择恰当的方法解方程
(1)3(x﹣5)2=2(5﹣x);
(2)3x2+5(2x+1)=1.
16、(8分)已知,一次函数的图象与x轴、y轴分别交于点A和B.
求A,B两点的坐标,并在如图的坐标系中画出函数的图象;
若点C在第一象限,点D在x轴的正半轴上,且四边形ABCD是菱形,直接写出C,D两点的坐标.
17、(10分)阅读材料:
关于的方程:
的解为:,
(可变形为)的解为:,
的解为:,
的解为:,
…………
根据以上材料解答下列问题:
(1)①方程的解为 .
②方程的解为 .
(2)解关于方程:
① ()
②()
18、(10分)某种商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价上涨1元,则每个月少卖10件.若商城某个月要盈利1250元,求每件商品应上涨多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若一个三角形的三边长为3、4、x,则使此三角形是直角三角形的x的值是__________.
20、(4分)不等式1﹣2x≥3的解是_____.
21、(4分)D、E、F分别是△ABC各边的中点.若△ABC的周长是12cm,则△DEF的周长是____cm.
22、(4分)一个三角形的两边的长分别是3和5,要使这个三角形为直角三角形,则第三条边的长为_____.
23、(4分)已知是整数,则正整数n的最小值为___
二、解答题(本大题共3个小题,共30分)
24、(8分)近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作、、、;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:
(1)本次调查的学生总数为 人;
(2)在扇形统计图中,所对应扇形的圆心角 度,并将条形统计图补充完整;
(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.
25、(10分)如图,在平行四边形ABCD中,BE平分∠ABC,且与AD边交于点E,∠AEB=45°,证明:四边形ABCD是矩形.
26、(12分)某校八年级(1)班要从班级里数学成绩较优秀的甲、乙两位学生中选拔一人参加“全国初中数学联赛”,为此,数学老师对两位同学进行了辅导,并在辅导期间测验了6次,测验成绩如下表(单位:分):
次数,1, 2, 3, 4, 5, 6
甲:79,78,84,81,83,75
乙:83,77,80,85,80,75
利用表中数据,解答下列问题:
(1)计算甲、乙测验成绩的平均数.
(2)写出甲、乙测验成绩的中位数.
(3)计算甲、乙测验成绩的方差.(结果保留小数点后两位)
(4)根据以上信息,你认为老师应该派甲、乙哪名学生参赛?简述理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据一次函数的性质对①②进行判断;根据一次函数与一元一次不等式的关系,利用两函数图象的位置对③进行判断,联立方程解答即可.
【详解】
∵一次函数y=kx+b的图象经过第二、四象限,
∴k<0,所以①正确;
∵一次函数y=x+a的图象与y轴的交点在x轴下方,
∴a<0,所以②错误;
∵x<3时,一次函数y=kx+b的图象都在函数y=x+a的图象下方,
∴不等式kx+b
∴a−b=3k−3,正确;
故选C
本题考查一次函数与一元一次不等式,熟练掌握运算法则是解题关键.
2、C
【解析】
由正方形的性质和相似三角形的判定与性质,即可得出结论.
【详解】
∵△BPC是等边三角形,
∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
在正方形ABCD中,
∵AB=BC=CD,∠A=∠ADC=∠BCD=90°
∴∠ABE=∠DCF=30°,
∴BE=2AE;故①正确;
∵PC=CD,∠PCD=30°,
∴∠PDC=75°,
∴∠FDP=15°,
∵∠DBA=45°,
∴∠PBD=15°,
∴∠FDP=∠PBD,
∵∠DFP=∠BPC=60°,
∴△DFP∽△BPH;故②正确;
∵∠FDP=∠PBD=15°,∠ADB=45°,
∴∠PDB=30°,而∠DFP=60°,
∴∠PFD≠∠PDB,
∴△PFD与△PDB不会相似;故③错误;
∵∠PDH=∠PCD=30°,∠DPH=∠DPC,
∴△DPH∽△CPD,
∴,
∴DP2=PH∙PC,故④正确;
故选C.
3、A
【解析】
试题解析:连接CD,交OB于P.则CD就是PD+PA和的最小值.
∵在直角△OCD中,∠COD=90°,OD=2,OC=6,
∴CD=,
∴PD+PA=PD+PC=CD=2.
∴PD+PA和的最小值是2.
故选A.
4、D
【解析】
由二次根式有意义的条件得:被开方数为非负数可得答案.
【详解】
解:由有意义,则,解得:.
故选D.
本题考查的是二次根式有意义的条件,掌握被开方数为非负数是解题的关键.
5、C
【解析】
解:∵四边形ABCD是平行四边形,
∴AB∥CD,AD=BC=8,CD=AB=6,
∴∠F=∠DCF,
∵∠C平分线为CF,
∴∠FCB=∠DCF,
∴∠F=∠FCB,
∴BF=BC=8,
同理:DE=CD=6,
∴AF=BF−AB=2,AE=AD−DE=2
∴AE+AF=4
故选C
6、D
【解析】
过点A作AD⊥x轴,过点C作CE⊥x轴,过点B作BF⊥x轴,利用AA定理和平行证得△COE∽△OBF∽△AOD,然后根据相似三角形的性质求得,,根据反比例函数比例系数的几何意义求得,从而求得,从而求得k的值.
【详解】
解:过点A作AD⊥x轴,过点C作CE⊥x轴,过点B作BF⊥x轴
∴CE∥AD,∠CEO=∠BFO=90°
∵
∴∠COE+∠FOB=90°,∠ECO+∠COE=90°
∴∠ECO=∠FOB
∴△COE∽△OBF∽△AOD
又∵,
∴,
∴,
∴
∵点在反比例函数的图象上
∴
∴
∴,解得k=±8
又∵反比例函数位于第二象限,
∴k=-8
故选:D.
本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.
7、B
【解析】
延长DC交FE于点M,连结BD,BF,根据正方形的性质,得DM的长,FM的长,∠DBF的度数,由勾股定理求出DF的长,由直角三角形的性质,得BH的长.
【详解】
如图示,延长DC交FE于点M,连接BD,BF.
∵正方形ABCD,BEFG的边长分别为3,4,
∴DC=EM=3,EF=CM=4,
∴FM=1,DM=7
在Rt△FDM中,DF==5 ,
∵正方形ABCD,BEFG,
∴∠DBC=∠FBC=45°,
∴∠DBF=90°,
∵H为线段DF的中点,
∴BH= DF= .
故选B
本题主要考查正方形的性质,勾股定理,直角三角形的判定与性质,解题关键在于作辅助线
8、C
【解析】
命题的真假,用证明的方法去判断,或者找到反例即可,
【详解】
A项平行四边形的对角线相等,这个不一定成立,反例只要不是正方形的菱形的对角线均不相等.
B项经过旋转,对应线段平行且相等,这个不一定成立,反例旋转九十度,肯定不会平行,C项两组对角分别相等的四边形是平行四边形,这个是成立的,因为对角相等,那么可以得到同位角互补,同位角互补可以得到两组对边平行.
D项两边相等的两个直角三角形全等,这个没有加对应的这几个字眼,那么就可以找到反例,一个直角三角形的两个直角边与另一个直角三角形的一直角边和斜边相等,那么这两个直角肯定不全等,所以选择C
本题主要考查基本定义和定理,比如四边形的基本性质,线段平行的关系,直角三角形全等的条件,把握这些定义和定理就没有问题了
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
先解不等式组得出其解集为,结合可得关于的方程,解之可得答案.
【详解】
解不等式,得:,
解不等式,得:,
∵不等式组的解集为,
∴,
解得,
故答案为:1.
本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
10、2
【解析】
试题分析:相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.因此.
11、1
【解析】
先根据已知条件以及多边形的外角和是360°,解出内角和的度数,再根据内角和度数的计算公式即可求出边数.
【详解】
解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,
∴多边形的内角和是900﹣360=140°,
∴多边形的边数是:140°÷180°+2=3+2=1.
故答案为:1.
本题主要考查多边形的内角和定理及多边形的外角和定理,熟练掌握多边形内角和定理是解答本题的关键.n边形的内角和为:(n-2) ×180°, n边形的外角和为:360°.
12、
【解析】
根据表中的信息,先求出石块标记3的面落在地面上的频率,再用频率估计概率即可.
【详解】
解:石块标记3的面落在地面上的频率是=,
于是可以估计石块标记3的面落在地面上的概率是.
故答案为:.
本题考查用频率来估计概率,在大量重复试验下频率的稳定值即是概率,属于基础题.
13、 (−1.5,2)或(−3.5,−2)或(−0.5,4).
【解析】
要使以为顶点的四边形是平行四边形,则PQ=AC=2,在直线AB上到x轴的距离等于2 的点,就是P点,因此令y=2或−2求得x的值即可.
【详解】
∵点Q在x轴上,点P在直线AB上,以为顶点的四边形是平行四边形,
当AC为平行四边形的边时,
∴PQ=AC=2,
∵P点在直线y=2x+5上,
∴令y=2时,2x+5=2,解得x=−1.5,
令y=−2时,2x+5=−2,解得x=−3.5,
当AC为平行四边形的对角线时,
∵AC的中点坐标为(3,2),
∴P的纵坐标为4,
代入y=2x+5得,4=2x+5,
解得x=−0.5,
∴P(−0.5,4),
故P为(−1.5,2)或(−3.5,−2)或(−0.5,4).
故答案为:(−1.5,2)或(−3.5,−2)或(−0.5,4).
此题考查坐标与图形变化-旋转,解题关键在于掌握性质的性质
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)四边形ABCF是平行四边形.
【解析】
(1)利用尺规作出∠DAC的平分线AM即可,连接BE延长BE交AM于F,连接FC;
(2)只要证明△AEF≌△CEB即可解决问题.
【详解】
解:(1)如图所示:
(2)四边形ABCF是平行四边形.
理由如下:
∵AB=AC,
∴∠ABC=∠ACB.
∴∠DAC=∠ABC+∠ACB=2∠ACB.
由作图可知∠DAC=2∠FAC,
∴∠ACB=∠FAC.
∴AF∥BC.
∵点E是AC的中点,
∴AE=CE.
在△AEF和△CEB中, ∠FAE=∠ECB,AE=CE,∠AEF=∠CEB,
∴△AEF≌△CEB(ASA),
∴AF=BC.
又∵AF∥BC,
∴四边形ABCF是平行四边形.
本题考查了角平分线的作法、全等三角形的判定、平行四边形的判定,熟练掌握并灵活运用是解题的关键.
15、(1)(2)
【解析】
(1)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;
(2)整理后求出b2-4ac的值,再代入公式求出即可.
【详解】
解:(1)3(x﹣5)2=2(5﹣x),
3(x﹣5)2+2(x﹣5)=1,
(x﹣5)[3(x﹣5)+2]=1,
x﹣5=1,3(x﹣5)+2=1,
x1=5,x2=﹣;
(2)3x2+5(2x+1)=1,
整理得:3x2+11x+5=1,
b2﹣4ac=112﹣4×3×5=41,
x=,
x1=,x2=.
本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.
16、 (1) A,B,画图见解析;(2),.
【解析】
(1)先求出A,B两点的坐标,再画函数图象;(2)根据图形,结合勾股定理和菱形性质推出边长,得到C.D的坐标.
【详解】
解:将代入,可得;
将,代入,可得;
点A的坐标为,点B的坐标为,
如图所示,直线AB即为所求;
由点A的坐标为,点B的坐标为,可得
,,
中,,
四边形ABCD是菱形,
,
,
,.
本题考核知识点:一次函数与菱形. 解题关键点:熟记菱形的判定与性质.
17、(1)①,;②,;(2)①,;②,.
【解析】
试题分析:(1)①令第一个方程中的a=2即可得到答案;
②把(x-1)看成一个整体,利用第一个方程的规律即可得出答案;
(2)①等式两边减去1,把(x-1)和(a-1)分别看成是整体,利用第三个方程的规律即可得出答案;
②等式两边减去2,把(x-2)和(a-2)分别看成是整体,利用第二个方程和第四个方程的规律即可得出答案.
试题解析:
解:(1)①由第一个方程规律可得:x1=2,x2=;
②根据第一个方程规律可得:x-1=3或x-1=,
∴x1=4,x2=;
(2)①方程两边减1得:(x-1)+=(a-1)+ ,
∴x-1=a-1或x-1=,
∴:x1=a,x2=;
②方程两边减2得:(x-2)+=(a-2)+ ,
∴∴x-2=a-2或x-2=,
∴:x1=a,x2=.
点睛:此题考查了分式方程的解,属于规律型试题,弄清题中的规律是解本题的关键.
18、上涨15元;
【解析】
设商品的售价上涨x元(x为整数),每个月的销售利润为y元,直接利用每件利润×销量=总利润得到解析式,进而把y=1250求出答案,即可解答.
【详解】
设商品的售价上涨x元(x为整数),每个月的销售利润为y元,
根据题意,y=(60-50+x)(200-10x),
整理得,y=-10x2+100x+2000;
把y=1250代入解析式得:-10x2+100x+2000=1250,
x2-10x-75=0,
解得:x1=15,x2=-5(不合题意,舍去),
答:商场某个月要盈利1250元,每件商品应上涨15元;
此题考查二次函数的应用,一元二次方程的应用,正确得出函数关系式是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1或 .
【解析】
分析: 由于直角三角形的斜边不能确定,故应分4是斜边或直角边两种情况进行讨论.
详解:当4是直角三角形的斜边时,32+x2=42,解得x=;
当4是直角三角形的直角边时,32+42=x2,解得x=1.
故使此三角形是直角三角形的x的值是1或.
故答案为: 1或.
点睛:本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.
20、x≤﹣1.
【解析】
根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.
【详解】
∵﹣2x≥3﹣1,∴﹣2x≥2,则x≤﹣1,故答案为:x≤﹣1.
此题考查解一元一次不等式,难度不大
21、1
【解析】
如图所示,
∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,
同理有EF=AB,DF=BC,
∴△DEF的周长=(AC+BC+AB)=×12=1cm,
故答案为:1.
22、4或
【解析】
解:①当第三边是斜边时,第三边的长的平方是:32+52=34;
②当第三边是直角边时,第三边长的平方是:52-32=25-9=16=42,
故答案是:4或.
23、1
【解析】
因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.
【详解】
∵,且是整数,
∴是整数,即1n是完全平方数;
∴n的最小正整数值为1.
故答案为:1.
主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.
二、解答题(本大题共3个小题,共30分)
24、(1)50;(2)144°,图见解析;(3) .
【解析】
(1)根据“优”的人数和所占的百分比即可求出总人数;
(2)用360°乘以“良”所占的百分比求出B所对应扇形的圆心角;用总人数减去“优”、“良”、“差”的人数,求出“中”的人数,即可补全统计图;
(3)根据题意画出树状图得出所以等情况数和所选的两位同学测试成绩恰好都为“良”的情况数,然后根据概率公式即可得出答案.
【详解】
(1)本次调查的学生总数为:15÷30%=50(人);
故答案为:50;
(2)在扇形统计图中,B所对应扇形的圆心角是360°×=144°;
“中”等级的人数是:50-15-20-5=10(人),补图如下:
故答案为:10;
(3)“优秀”和“良”的分别用A1,A2,和B1,B2表示,则画树状图如下:
共有12种情况,所选的两位同学测试成绩恰好都为“良”的有2种,
则所选的两位同学测试成绩恰好都为“良”的概率是 .
此题考查列表法或树状图法求概率.解题关键在于掌握列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
25、见解析
【解析】
利用平行线性质得到∠EBC=∠AEB=45°,因为BE平分∠ABC,所以∠ABE=∠EBC=45°,所以∠ABC=90°,所以四边形ABCD是矩形
【详解】
∵AD∥BC
∴∠EBC=∠AEB=45°
∵BE平分∠ABC
∴∠ABE=∠EBC=45°
∴∠ABC=∠ABE +∠EBC =90°
又∵四边形ABCD是平行四边形
∴四边形ABCD是矩形
本题主要考查角平分线性质、平行四边形性质、矩形的判定定理,本题关键在于能够证明出∠ABC是直角
26、 (1)80分,80分 ;(2)80分; (3)9.33,11.33 ;(4)派甲去.
【解析】
试题分析:本题考查了方差, 算术平均数, 中位数的计算.
(1)由平均数的计算公式计算甲、乙测试成绩的平均分;
(2)将一组数据从小到大(或从大到小)重新排列后,中间两个数的平均数是甲、乙测试成绩的中位数;
(3)由方差的计算公式计算甲、乙测试成绩的方差;
(4)方差越小,表明这个同学的成绩偏离平均数越小,即波动越小,成绩越稳定.
解:(1)x甲=(分),
x乙=(分).
(2)甲、乙测验成绩的中位数都是80分.
(3)=[(79-80)2+(78-80)2+(84-80)2+(81-80)2+(83-80)2+(75-80)2]≈9.33,
=[(83-80)2+(77-80)2+(80-80)2+(85-80)2+(80-80)2+(75-80)2]≈11.33.
(4)结合以上信息,应该派甲去,因为在平均数和中位数都相同的情况下,甲的测验成绩更稳定.
题号
一
二
三
四
五
总分
得分
批阅人
石块的面
1
2
3
4
5
频数
17
28
15
16
24
2024年吉林省农安县杨树林中学数学九上开学调研模拟试题【含答案】: 这是一份2024年吉林省农安县杨树林中学数学九上开学调研模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖北省武汉十三中学数学九上开学调研模拟试题【含答案】: 这是一份2024年湖北省武汉十三中学数学九上开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省桐城实验中学数学九上开学调研试题【含答案】: 这是一份2024年安徽省桐城实验中学数学九上开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。