终身会员
搜索
    上传资料 赚现金

    2024年辽宁抚顺新抚区数学九上开学检测试题【含答案】

    立即下载
    加入资料篮
    2024年辽宁抚顺新抚区数学九上开学检测试题【含答案】第1页
    2024年辽宁抚顺新抚区数学九上开学检测试题【含答案】第2页
    2024年辽宁抚顺新抚区数学九上开学检测试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年辽宁抚顺新抚区数学九上开学检测试题【含答案】

    展开

    这是一份2024年辽宁抚顺新抚区数学九上开学检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是( )
    A.方差B.平均数C.中位数D.众数
    2、(4分)如图,正方形ABCD中,AE垂直于BE,且AE=3,BE=4,则阴影部分的面积是( )
    A.16B.18C.19D.21
    3、(4分)若两个相似三角形的周长比为4:3,则它们的相似比为( ).
    A.4:3B.3:4C.16:9D.9:16
    4、(4分)设的整数部分是,小数部分是,则的值为( ).
    A.B.C.D.
    5、(4分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是( )
    A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣ab
    C.(a﹣b)2=a2﹣b2D.a2﹣b2=(a+b)(a﹣b)
    6、(4分)已知x=1是一元二次方程的解,则b的值为( )
    A.0B.1C.D.2
    7、(4分)如图,点E是菱形ABCD对角线BD上任一点,点F是CD上任一点,连接CE,EF,当,时,的最小值是( )
    A.B.10C.D.5
    8、(4分)平行四边形中,若,则的度数为( ).
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)计算=________________.
    10、(4分)为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,则估计湖里约有鱼_______条.
    11、(4分)如果一次函数的图像经过点和,那么函数值随着自变量的增大而__________.(填“增大”或“不变”或“减小”)
    12、(4分)若在实数范围内有意义,则的取值范围是____________.
    13、(4分)已知:在矩形ABCD中,AD=2AB,点E在直线AD上,连接BE,CE,若BE=AD,则∠BEC的大小为_____度.
    三、解答题(本大题共5个小题,共48分)
    14、(12分) “西瓜足解渴,割裂青瑶肤”,西瓜为夏季之水果,果肉味甜,能降温去暑;种子含油,可作消遣食品;果皮药用,有清热、利尿、降血压之效.某西瓜批发商打算购进“黑美人”西瓜与“无籽”西瓜两个品种的西瓜共70000千克.
    (1)若购进“黑美人”西瓜的重量不超过“无籽”西瓜重量的倍,求“黑美人”西瓜最多购进多少千克?
    (2)该批发商按(1)中“黑美人”西瓜最多重量购进,预计“黑美人”西瓜售价为4元/千克;“无籽”西瓜售价为5元/千克,两种西瓜全部售完.由于存储条件的影响,“黑美人”西瓜与“无籽”西瓜分别有与的损坏而不能售出.天气逐渐炎热,西瓜热卖,“黑美人”西瓜的销售价格上涨,“无籽”西瓜的销售价格上涨,结果售完之后所得的总销售额比原计划下降了3000元,求的值.
    15、(8分)如图,在平面直角坐标系xOy中,矩形ABCD的边AD=6,A(1,0), B(9,0),直线y=kx+b经过B、D两点.
    (1)求直线y=kx+b的表达式;
    (2)将直线y=kx+b平移,当它与矩形没有公共点时,直接写出b的取值范围.
    16、(8分)问题探究
    (1)请在图①中作出两条直线,使它们将圆面四等分;
    (2)如图②,是正方形内一定点,请在图②中作出两条直线(要求其中一条直线必须过点),使它们将正方形的面积四等分:
    问题解决
    (3)如图③,在四边形中,,点是的中点如果,且,那么在边上足否存在一点,使所在直线将四边形的面积分成相等的两部分?若存在,求出的长:若不存在,说明理由.
    17、(10分)如图,在中,,是上一点,,过点作的垂线交于点.
    求证:.
    18、(10分)根据指令[s,α](s≥0,0°<α<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度α,再朝其面对的方向沿直线行走距离s,现机器人在直角坐标系的坐标原点,且面对x轴正方向.
    (1)若给机器人下了一个指令[4,60°],则机器人应移动到点______;
    (2)请你给机器人下一个指令_________,使其移动到点(-5,5).
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若,则.
    20、(4分)若是正比例函数,则的值为______.
    21、(4分)分式方程的解是_____.
    22、(4分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是__.
    23、(4分)小邢到单位附近的加油站加油,下图所示是他所用的加油机上的数据显示牌,则数据中的变量是______
    二、解答题(本大题共3个小题,共30分)
    24、(8分)甲、乙两位同学同时从学校出发,骑自行车前往距离学校20千米的郊野公园。已知甲同学比乙同学平均每小时多骑行2千米,甲同学在路上因事耽搁了30分钟,结果两人同时到达公园。问:甲、乙两位同学平均每小时各骑行多少千米?
    25、(10分)已知,正方形ABCD中,,绕点A顺时针旋转,它的两边长分别交CB、DC或它们的延长线于点MN,于点H.
    如图,当点A旋转到时,请你直接写出AH与AB的数量关系;
    如图,当绕点A旋转到时,中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明.
    26、(12分)如图,直角坐标系中,一次函数的图象分别与,轴交于,两点,正比例函数的图象与交于点.
    (1)求的值及的解析式;
    (2)求的值;
    (3)一次函数的图象为,且,,不能围成三角形,直接写出的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    解:由于众数是数据中出现次数最多的数,故儿童福利院最值得关注的应该是统计调查数据的众数.
    故选.
    2、C
    【解析】
    由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD-S△ABE求面积.
    【详解】
    ∵AE⊥BE,且AE=3,BE=4,
    ∴在Rt△ABE中,AB3=AE3+BE3=35,
    ∴S阴影部分=S正方形ABCD﹣S△ABE=AB3﹣×AE×BE=35﹣×3×4=3.
    故选C.
    考点:3.勾股定理;3.正方形的性质.
    3、A
    【解析】
    根据相似三角形的周长比等于它们的相似比求解即可.
    【详解】
    ∵两个相似三角形的周长比为4:3
    ∴它们的相似比为4:3
    故答案为:A.
    本题考查了相似三角形的相似比问题,掌握相似三角形的周长比等于它们的相似比是解题的关键.
    4、B
    【解析】
    只需首先对 估算出大小,从而求出其整数部分a,再进一步表示出其小数部分b,然后将其代入所求的代数式求值.
    【详解】
    解:∵4<5<9,
    ∴1<<2,
    ∴-2< <-1.
    ∴1<<2.
    ∴a=1,
    ∴b=5--1=,
    ∴a-b=1-2+=
    故选:B.
    此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算. “夹逼法”是估算的一般方法,也是常用方法.
    5、D
    【解析】
    利用正方形的面积公式和矩形的面积公式分别表示出阴影部分的面积,然后根据面积相等列出等式即可.
    【详解】
    解:第一个图形阴影部分的面积是a2﹣b2,
    第二个图形的面积是(a+b)(a﹣b),
    则a2﹣b2=(a+b)(a﹣b),
    故选D.
    本题考查了平方差公式的几何背景,正确用两种方法表示阴影部分的面积是关键.
    6、C
    【解析】
    根据一元二次方程解的定义,把x=1代入x1+bx+1=0得关于b的一次方程,然后解一次方程即可.
    【详解】
    解:把x=1代入x1+bx+1=0
    得1+b+1=0,解得b=-1.
    故选:C.
    本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    7、C
    【解析】
    过A作AF⊥CD交BD于E,则此时,CE+EF的值最小,CE+EF的最小值=AF,根据已知条件得到△ADF是等腰直角三角形,于是得到结论.
    【详解】
    解:如图,

    ∵四边形ABCD是菱形,
    ∴点A与点C关于BD对称,
    过A作AF⊥CD交BD于E,则此时,CE+EF的值最小,
    ∴CE+EF的最小值为AF,
    ∵∠ABC=45°,
    ∴∠ADC=∠ABC=45°,
    ∴△ADF是等腰直角三角形,
    ∵AD=BC=10,
    ∴AF=AD=,
    故选C.
    本题考查了轴对称-最短路线问题,菱形的性质,等腰直角三角形的判定和性质,正确的作出图形是解题的关键.
    8、B
    【解析】
    根据平行四边形的性质:邻角互补,对角线相等即可解答
    【详解】
    在平行四边形中,
    ∴,
    故选:B.
    本题考查平行四边形的性质,解题关键是熟练掌握平行四边形的角的性质:邻角互补,对角线相等.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    直接利用二次根式的乘法运算法则计算得出答案.
    【详解】
    原式=,
    故答案为:.
    本题考查了二次根式的乘法运算,正确化简二次根式是解题关键.
    10、1500
    【解析】
    300条鱼里有30条作标记的,则作标记的所占的比例是30÷300=10%,即所占比例为10%.而有标记的共有150条,据此比例即可解答.
    【详解】
    150÷(30÷300)=1500(条).
    故答案为:1500
    本题考查的是通过样本去估计总体.
    11、增大
    【解析】
    根据一次函数的单调性可直接得出答案.
    【详解】
    当时,;当时,,
    ∵ ,
    ∴函数值随着自变量的增大而增大,
    故答案为:增大.
    本题主要考查一次函数的性质,掌握一次函数的性质是解题的关键.
    12、且.
    【解析】
    分析:根据分式有意义和二次根式有意义的条件解题.
    详解:因为在实数范围内有意义,所以x≥0且x-1≠0,则x≥0且x≠1.
    故答案为x≥0且x≠1.
    点睛:本题考查了分式和二次根式有意义的条件,分式有意义的条件是分母不等于0;二次根式有意义的条件是被开方数是非负数,代数式既有分式又有二次根式时,分式与二次根式都要有意义.
    13、75或1
    【解析】
    分两种情况:①当点E在线段AD上时,BE=AD,由矩形的性质得出BC=AD=BE=2AB,∠BAE=90°,AD∥BC,得出BE=2AB,∠BEC=∠BCE,∠CBE=∠AEB,得出AB= BE,证出∠AEB=30°,得出∠CBE=30°,即可得出结果;②点E在DA延长线上时,BE=AD,同①得出∠AEB=30°,由直角三角形的性质得出∠ABE=60°,求出∠CBE=90°+60°=10°,即可得出结果.
    【详解】
    解:分两种情况:
    ①当点E在线段AD上时,BE=AD,如图1所示:
    ∵四边形ABCD为矩形,
    ∴BC=AD=BE=2AB,∠BAE=90°,AD∥BC,
    ∴BE=2AB,∠BEC=∠BCE,∠CBE=∠AEB,
    ∴AB=BE,
    ∴∠AEB=30°,
    ∴∠CBE=30°,
    ∴∠BEC=∠CBE=(180°﹣30°)=75°;
    ②点E在DA延长线上时,BE=AD,如图2所示:
    ∵四边形ABCD为矩形,
    ∴BC=AD=BE=2AB,∠ABC=∠BAE=∠BAD=90°,
    ∴BE=2AB,∠BEC=∠BCE,
    ∴AB=BE,
    ∴∠AEB=30°,
    ∴∠ABE=60°,
    ∴∠CBE=90°+60°=10°,
    ∴∠BEC=∠BCE=(180°﹣10°)=1°;
    故答案为:75或1.
    本题考查了矩形的性质、直角三角形的性质、平行线的性质、等腰三角形的性质等知识;熟练掌握矩形的性质,进行分类讨论是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)最多(2)
    【解析】
    (1)设购进“黑美人”西瓜千克,则购进“无籽”西瓜千克,根据购进“黑美人”西瓜的重量不超过“无籽”西瓜重量的倍,即可得出关于的一元一次不等式,解之取其最大值即可得出结论; (2)根据总价=单价×数量,即可得出关于的一元二次方程,解之取其正值即可得出结论.
    【详解】
    解:(1)设购进“黑美人”西瓜千克,则购进“无籽”西瓜千克, 依题意,得:,
    解得:.
    答:“黑美人”西瓜最多购进40000千克.
    (2)由题意得: ,
    整理,得:,
    解得:(舍去).
    答:的值为1.
    本题考查了一元一次不等式的应用以及一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元二次方程.
    15、(1);(2)或.
    【解析】
    试题分析:(1)求出B, D两点坐标,根据点在直线上点的坐标满足方程的关系,将B, D两点坐标代入y=kx+b中,得到方程组,解之即得直线y=kx+b的表达式.
    (2)将直线平移,平移后的解析式为,当它左移超过点A或右移超过点C时,它与矩形没有公共点 .因此,只要将A, C两点坐标分别代入中求出的值即可求得b的取值范围或.
    (1)∵ A(1,0), B(9,0),AD=1.
    ∴D(1,1).
    将B, D两点坐标代入y=kx+b中,
    得,解得.
    ∴直线的表达式为.
    (2)或.
    考点:1.直线上点的坐标与方程的关系;2.平移的性质.
    16、(1)答案见解析;(2)答案见解析;(3)存在,BQ=b
    【解析】
    (1)画出互相垂直的两直径即可;
    (2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等分,根据三角形的面积公式和正方形的性质求出即可;
    (3)当BQ=CD=b时,PQ将四边形ABCD的面积二等份,连接BP并延长交CD的延长线于点E,证△ABP≌△DEP求出BP=EP,连接CP,求出S△BPC=S△EPC,作PF⊥CD,PG⊥BC,由BC=AB+CD=DE+CD=CE,求出S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP,即可得出S四边形ABQP=S四边形CDPQ即可.
    【详解】
    解:(1)如图1所示,
    (2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,
    则直线EF、OM将正方形的面积四等分,
    理由是:∵点O是正方形ABCD的对称中心,
    ∴AP=CQ,EB=DF,
    在△AOP和△EOB中
    ∵∠AOP=90°-∠AOE,∠BOE=90°-∠AOE,
    ∴∠AOP=∠BOE,
    ∵OA=OB,∠OAP=∠EBO=45°,
    ∴△AOP≌△EOB,
    ∴AP=BE=DF=CQ,
    设O到正方形ABCD一边的距离是d,
    则(AP+AE)d=(BE+BQ)d=(CQ+CF)d=(PD+DF)d,
    ∴S四边形AEOP=S四边形BEOQ=S四边形CQOF=S四边形DPOF,
    直线EF、OM将正方形ABCD面积四等份;
    (3)存在,当BQ=CD=b时,PQ将四边形ABCD的面积二等份,
    理由是:如图③,连接BP并延长交CD的延长线于点E,
    ∵AB∥CD,
    ∴∠A=∠EDP,
    ∵在△ABP和△DEP中
    ∴△ABP≌△DEP(ASA),
    ∴BP=EP,
    连接CP,
    ∵△BPC的边BP和△EPC的边EP上的高相等,
    又∵BP=EP,
    ∴S△BPC=S△EPC,
    作PF⊥CD,PG⊥BC,则BC=AB+CD=DE+CD=CE,
    由三角形面积公式得:PF=PG,
    在CB上截取CQ=DE=AB=a,则S△CQP=S△DEP=S△ABP
    ∴S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP
    即:S四边形ABQP=S四边形CDPQ,
    ∵BC=AB+CD=a+b,
    ∴BQ=b,
    ∴当BQ=b时,直线PQ将四边形ABCD的面积分成相等的两部分.
    本题考查了正方形性质,菱形性质,三角形的面积等知识点的应用,主要考查学生综合运用性质进行推理的能力,注意:等底等高的三角形的面积相等.
    17、见解析.
    【解析】
    首先根据HL证明Rt△ECB≌Rt△EDB,得出∠EBC=∠EBD,然后根据等腰三角形三线合一性质即可证明.
    【详解】
    解:证明:

    ∵.



    在中与中,
    ∵,
    ∴ (HL)
    ∴,
    ∴(三线合一).
    本题考查了全等三角形的判定与性质,等腰三角形“三线合一”的性质,得出∠EBC=∠EBD,是解题的关键.
    18、(1)(2,);(2)[,135]
    【解析】
    试题分析:认真分析题中所给的指令即可得到结果.
    (1)先逆时针旋转60°,再前进4,所以到达的点的坐标是(2,);
    (2)要使机器人能到达点(-5,5),应对其下达[,135]
    考点:本题考查的是点的坐标
    点评:解答本题的关键是读懂题意,正确理解指令[S, A]中的S和A所分别代表是含义.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据比例的性质即可求解.
    【详解】
    ∵,∴x=3y,∴原式==1.
    故答案为:1.
    本题考查了比例的性质,关键是得出x=3y.
    20、2
    【解析】
    根据正比例函数的定义即可求解.
    【详解】
    依题意得a-1=1,解得a=2
    此题主要考查正比例函数的定义,解题的关键是熟知正比例函数的特点.
    21、
    【解析】
    两边都乘以x(x-1),化为整式方程求解,然后检验.
    【详解】
    原式通分得:
    去分母得:
    去括号解得,
    经检验,为原分式方程的解
    故答案为
    本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.
    22、m=1.
    【解析】
    分析:若一元二次方程有实根,则根的判别式△=b2﹣1ac≥2,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为2.
    详解:∵关于x的一元二次方程(m﹣5)x2+2x+2=2有实根,
    ∴△=1﹣8(m﹣5)≥2,且m﹣5≠2,
    解得m≤5.5,且m≠5,
    则m的最大整数解是m=1.
    故答案为m=1.
    点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>2,方程有两个不相等的实数根;(2)△=2,方程有两个相等的实数根;(3)△<2方程没有实数根.
    23、金额与数量
    【解析】
    根据常量与变量的意义结合油的单价是不变的,而金额随着加油数量的变化在变化,据此即可得答案.
    【详解】
    常量是固定不变的量,变量是变化的量,
    单价是不变的量,而金额是随着数量的变化而变化,
    故答案为:金额与数量.
    本题考查了常量与变量,熟练掌握常量与变量的概念是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、甲平均每小时行驶10千米,乙平均每小时行驶8千米
    【解析】
    设乙平均每小时骑行x千米,则甲平均每小时骑行(x+2)千米,根据题意可得,同样20千米的距离,乙比甲多走30分钟,据此列方程求解.
    【详解】
    设甲平均每小时行驶x千米,
    则,
    化简为:,
    解得:,
    经检验不符合题意,是原方程的解,
    答:甲平均每小时行驶10千米,乙平均每小时行驶8千米。
    本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.
    25、;(2)数量关系还成立.证明见解析.
    【解析】
    (1)由题意可证△ABM≌△ADN,可得AM=AN,∠BAM=∠DAN=22.5°,再证△ABM≌△AMH可得结论;
    (2)延长CB至E,使BE=DN,可证△ABE≌△ADN,可得AN=AE,∠BAE=∠DAN,可得∠EAM=∠MAN=45°且AM=AM,AE=AN,可证△AME≌△AMN,则结论可证.
    【详解】
    ,理由如下:
    是正方形
    ,且,
    ≌,
    ,,



    ,,

    且,,
    ≌,

    数量关系还成立.
    如图,延长CB至E,使,
    ,,,
    ≌,
    ,,

    即,
    且,,
    ≌,
    ,≌,

    .
    本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,正确添加辅助线构建全等三角形是解题的关键.
    26、(1);(2)4;(3)或2或.
    【解析】
    (1)先求得点的坐标,再运用待定系数法即可得到的解析式;
    (2)过作于,于,则,,再根据,,可得,,进而得出的值;
    (3)分三种情况:当经过点时,;当,平行时,;当,平行时,;故的值为或2或.
    【详解】
    解:(1)把代入一次函数,可得

    解得,

    设的解析式为,则,
    解得,
    的解析式为;
    (2)如图,过作于,于,则,,
    ,令,则;令,则,
    ,,
    ,,

    (3)一次函数的图象为,且,,不能围成三角形,
    当经过点时,;
    当,平行时,;
    当,平行时,;
    故的值为或2或.
    本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024-2025学年辽宁省抚顺市新抚区九年级数学第一学期开学监测试题【含答案】:

    这是一份2024-2025学年辽宁省抚顺市新抚区九年级数学第一学期开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年辽宁抚顺新抚区九年级数学第一学期开学质量跟踪监视试题【含答案】:

    这是一份2024-2025学年辽宁抚顺新抚区九年级数学第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    辽宁省抚顺市新抚区2023-2024学年九上数学期末经典试题含答案:

    这是一份辽宁省抚顺市新抚区2023-2024学年九上数学期末经典试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,方程x,下列事件中,属于必然事件的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map