|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年辽宁省葫芦岛市数学九年级第一学期开学经典模拟试题【含答案】
    立即下载
    加入资料篮
    2024年辽宁省葫芦岛市数学九年级第一学期开学经典模拟试题【含答案】01
    2024年辽宁省葫芦岛市数学九年级第一学期开学经典模拟试题【含答案】02
    2024年辽宁省葫芦岛市数学九年级第一学期开学经典模拟试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年辽宁省葫芦岛市数学九年级第一学期开学经典模拟试题【含答案】

    展开
    这是一份2024年辽宁省葫芦岛市数学九年级第一学期开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列四组线段中,不能作为直角三角形三条边的是( )
    A.8,15,17B.1,2,C.7,23,25D.1.5,2,2.5
    2、(4分)一个多边形的每个内角均为120°,则这个多边形是( )
    A.四边形B.五边形C.六边形D.七边形
    3、(4分)如图,已知点在反比例函数()的图象上,作,边在轴上,点为斜边的中点,连结并延长交轴于点,则的面积为( )
    A.B.C.D.
    4、(4分)如图,一次函数的图象交轴于点,则不等式的解集为( )
    A.B.C.D.
    5、(4分)如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为( )
    A.8B.10C.12D.14
    6、(4分)如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是( )
    A.3cmB.4cmC.5cmD.6cm
    7、(4分)在四边形ABCD中,对角线AC、BD交于点O,下列条件中,不能判定四边形ABCD是平行四边形的是( )
    A.AB=DC,AD=BCB.AD∥BC,AD=BC
    C.AB∥DC,AD=BCD.OA=OC,OD=OB
    8、(4分)如图所示,在△ABC中,其中BC⊥AC,∠A=30°,AB=8m,点D是AB的中点,点E是AC的中点,则DE的长为( )
    A.5B.4C.3D.2
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,的顶点在矩形的边上,点与点、不重合,若的面积为4,则图中阴影部分两个三角形的面积和为_____.
    10、(4分)若是关于的一元二次方程的一个根,则____.
    11、(4分)如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,BF=6,则四边形ABEF的面积为________
    12、(4分)在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高度为 1m,那么它的下部应设计的高度为_____.
    13、(4分)如图,在平面直角坐标系xy中,矩形ABCD的边AB在x轴上,AO=2,BO=3,BC=4.将正方形沿箭头方向推,使点D落在y轴正半轴上点D’处,则点C的对应点C’的坐标为____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC,
    (1)求证:△ABE≌△ACF;
    (2)若∠BAE=30°,则∠ADC= °.
    15、(8分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
    (1)第一批饮料进货单价多少元?
    (2)若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?
    16、(8分)如图,一次函数的图象与正比例函数的图象交于点.
    (1)求正比例函数和一次函数的解析式;
    (2)根据图象写出使正比例函数的值大于一次函数的值的的取值范围;
    (3)求的面积.
    17、(10分)已知反比例函数(k为常数,k≠0)的图象经过点A(2,3).
    (1)求这个函数的解析式;
    (2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;
    (3)当-3<x<-1时,求y的取值范围.
    18、(10分)如图,一次函数的图象与反比例函数的图象交于第二、四象限的、两点,与、轴分别交于、两点,过点作轴于点,连接,且的面积为3,作点关于轴对称点.
    (1)求一次函数和反比例函数的解析式;
    (2)连接、,求的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)函数的图像与如图所示,则k=__________.
    20、(4分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,则不等式的解集为________.
    21、(4分)如图,在矩形ABCD中,E、F、G、H分别是四条边的中点,HF=2,EG=4,则四边形EFGH的面积为____________.
    22、(4分)如图,平行四边形ABCD的周长为20,对角线AC、BD交于点O,E为CD的中点,BD=6,则△DOE的周长为 _________ .
    23、(4分)如果一组数据3,4,,6,7的平均数为5,则这组数据的中位数和方差分别是__和__.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某商品的进价为每件40元,售价每件不低于60元且不高于80元,当售价为每件60元时,每个月可卖出100件;经调查发现,每件商品每上涨1元,每月少卖出2件.设每件商品的售价为x元(x为正整数).
    (1)求每个月的销售利润;(用含有x代数式表示)
    (2)若每个月的利润为2250元,定价应为多少元?
    25、(10分)如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:
    (1)DE=BF;
    (2)四边形DEBF是平行四边形.
    26、(12分)如图,已知菱形ABCD边长为4,,点E从点A出发沿着AD、DC方向运动,同时点F从点D出发以相同的速度沿着DC、CB的方向运动.
    如图1,当点E在AD上时,连接BE、BF,试探究BE与BF的数量关系,并证明你的结论;
    在的前提下,求EF的最小值和此时的面积;
    当点E运动到DC边上时,如图2,连接BE、DF,交点为点M,连接AM,则大小是否变化?请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据勾股定理的逆定理逐一判断即可.
    【详解】
    A.因为 82+152=172,故以8,15,17为三边长能构成直角三角形,故本选项不符合题意;
    B. 12+22=()2,故以1,2,为三边长能构成直角三角形,故本选项不符合题意;
    C. 72+232≠252,故以7,23,25为三边长不能构成直角三角形,故本选项符合题意;
    D. ,故以为三边长能构成直角三角形,故本选项不符合题意.
    故选C.
    此题考查的是直角三角形的判定,掌握用勾股定理的逆定理判定直角三角形是解决此题的关键.
    2、C
    【解析】
    由题意得,180°(n-2)=120°,
    解得n=6.故选C.
    3、A
    【解析】
    先根据题意证明△BOE∽△CBA,根据相似比得出BO×AB的值即为k的值,再利用BC×OE=BO×AB和面积公式即可求解.
    【详解】
    ∵BD为Rt△ABC的斜边AC上的中线,
    ∴BD=DC,∠DBC=∠ACB,
    又∠DBC=∠EBO,
    ∴∠EBO=∠ACB,
    又∠BOE=∠CBA=90∘,
    ∴△BOE∽△CBA,
    ∴,即BC×OE=BO×AB.
    即BC×OE=BO×AB=k=6.
    ∴ ,
    故选:A.
    本题主要考查相似三角形判定定理,熟悉掌握定理是关键.
    4、C
    【解析】
    观察函数图象,找出在x轴上方的函数图象所对应的x的取值,由此即可得出结论.
    【详解】
    解:观察函数图象,发现:
    当时,一次函数图象在x轴上方,
    不等式的解集为.
    故选:C.
    本题考查了一次函数与一元一次不等式,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.
    5、C
    【解析】
    根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.
    【详解】
    解:根据题意,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,
    ∴AD=1,BF=BC+CF=BC+1,DF=AC;
    又∵AB+BC+AC=10,
    ∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.
    故选C.
    本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.
    6、A
    【解析】
    分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.
    详解:设CN=xcm,则DN=(8﹣x)cm,
    由折叠的性质知EN=DN=(8﹣x)cm,
    而EC=BC=4cm,
    在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,
    即(8﹣x)2=16+x2,
    整理得16x=48,
    所以x=1.
    故选:A.
    点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.
    7、C
    【解析】
    根据平行四边形的判定方法逐一进行分析判断即可.
    【详解】
    A. AB=DC,AD=BC,根据两组对边分别平行的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意;
    B. AD∥BC,AD=BC,根据一组对边平行且相等的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意;
    C. AB∥DC,AD=BC,一组对边平行,另一组对边平行的四边形可能是平行四边形也可能是等腰梯形,故符合题意;
    D. OA=OC,OD=OB,根据对角线互相平分的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意,
    故选C.
    本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
    8、D
    【解析】
    根据D为AB的中点可求出AD的长,再根据在直角三角形中,30°角所对的直角边等于斜边的一半即可求出DE的长度.
    【详解】
    解:∵D为AB的中点,AB=8,
    ∴AD=4,
    ∵DE⊥AC于点E,∠A=30°,
    ∴DE=AD=2,
    故选D.
    本题考查了直角三角形的性质:直角三角形中,30°角所对的直角边等于斜边的一半.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    由平行四边形的性质可得S△ADE=S△ADF=1,由矩形的性质可得阴影部分两个三角形的面积和=S△ADF=1.
    【详解】
    解:∵四边形AFDE是平行四边形
    ∴S△ADE=S△ADF=1,
    四边形是矩形,
    阴影部分两个三角形的面积和,
    故答案为1.
    本题考查了矩形的性质,平行四边形的性质,灵活运用这些性质解决问题是本题的关键.
    10、0
    【解析】
    根据一元二次方程的解即可计算求解.
    【详解】
    把x=-2代入方程得,解得k=1或0,
    ∵k2-1≠0,k≠±1,
    ∴k=0
    此题主要考查一元二次方程的解,解题的关键是熟知一元二次方程二次项系数不为0.
    11、24
    【解析】
    首先证明四边形ABEF是菱形,由勾股定理求出OA,得出AE的长,即可解决问题.
    【详解】
    连接AE,
    ∵四边形ABCD为平行四边形
    ∴AD∥BC,AD=BC
    ∵BF为∠ABE的平分线,∴∠FBE=∠AFB,∴四边形ABEF为平行四边形
    ∵AB=AF,
    ∴根据勾股定理,即可得到AE=2=8.
    ∴四边形ABEF的面积=×AE×BF=24.
    本题考查了菱形的性质和判定,平行四边形的性质和判定,勾股定理,等腰三角形的性质,平行线的性质等知识;证明四边形ABEF是菱形是解决问题的关键.
    12、
    【解析】
    设雕像的下部高为x m,则上部长为(1-x)m,然后根据题意列出方程求解即可.
    【详解】
    解:设雕像的下部高为x m,则题意得:,
    整理得:,
    解得: 或 (舍去);
    ∴它的下部应设计的高度为.
    故答案为:.
    本题考查了黄金分割,解题的关键在于读懂题目信息并列出比例式,难度不大.
    13、 (5,)
    【解析】
    由题知从正方形变换到平行四边形时,边的长度没变,从而求出即可
    【详解】
    由题知从正方形变换到平行四边形时,A D’=AD=BC=4,D’C’=AB=5,
    ∵AO=2,根据勾股定理,则O D’=,则D’( 0,),故C’的坐标为(5,)
    熟练掌握图形变化中的不变边和勾股定理计算是解决本题的关键
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析;(2)1.
    【解析】
    (1)根据等边对等角可得∠B=∠ACF,然后利用SAS证明△ABE≌△ACF即可;
    (2)根据△ABE≌△ACF,可得∠CAF=∠BAE=30°,再根据AD=AC,利用等腰三角形的性质即可求得∠ADC的度数.
    【详解】
    (1)∵AB=AC,
    ∴∠B=∠ACF,
    在△ABE和△ACF中,

    ∴△ABE≌△ACF(SAS);
    (2)∵△ABE≌△ACF,∠BAE=30°,
    ∴∠CAF=∠BAE=30°,
    ∵AD=AC,
    ∴∠ADC=∠ACD,
    ∴∠ADC==1°,
    故答案为1.
    本题考查了全等三角形的判定与性质、等腰三角形的性质,熟练掌握相关性质与定理是解题的关键.
    15、 (1)4元/瓶.(2) 销售单价至少为1元/瓶.
    【解析】
    (1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,根据数量=总价÷单价结合第二批购进饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)由数量=总价÷单价可得出第一、二批购进饮料的数量,设销售单价为y元/瓶,根据利润=销售单价×销售数量﹣进货总价结合获利不少于2100元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.
    【详解】
    (1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,
    依题意,得:=3×,
    解得:x=4,
    经检验,x=4是原方程的解,且符合题意.
    答:第一批饮料进货单价是4元/瓶;
    (2)由(1)可知:第一批购进该种饮料450瓶,第二批购进该种饮料1350瓶.
    设销售单价为y元/瓶,
    依题意,得:(450+1350)y﹣1800﹣8100≥2100,
    解得:y≥1.
    答:销售单价至少为1元/瓶.
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
    16、(1)一次函数表达式为y=2x-2;正比例函数为y=x;(2)x<2;(3)1.
    【解析】
    (1)将(0,-2)和(1,0)代入解出一次函数的解析式,将M(2,2)代入正比例函数解答即可;
    (2)根据图象得出不等式的解集即可;
    (3)利用三角形的面积公式计算即可.
    【详解】
    经过和,
    解得,,
    一次函数表达式为:;
    把代入得

    点,
    直线过点,


    正比例函数解析式.
    由图象可知,当时,一次函数与正比例函数相交;时,正比例函数图象在一次函数上方,
    故:时,.
    如图,作MN垂直x轴,则,

    的面积为:.
    本题考查了一次函数的图象和性质问题,解题的关键是根据待定系数法解出解析式.
    17、(1)这个函数的解析式为:;(1)点C在函数图象上,理由见解析;(3),-2<y<-1.
    【解析】
    (1)把点A的坐标代入已知函数解析式,通过方程即可求得k的值;
    (1)只要把点B、C的坐标分别代入函数解析式,横纵坐标坐标之积等于2时,即该点在函数图象上;
    (3)根据反比例函数图象的增减性解答问题.
    【详解】
    解:(1)∵反比例函数(k为常数,k≠0)的图象经过点A(1,3),
    ∴把点A的坐标代入解析式,得,解得,k=2.
    ∴这个函数的解析式为:.
    (1)∵反比例函数解析式,
    ∴2=xy.
    分别把点B、C的坐标代入,得
    (-1)×2=-2≠2,则点B不在该函数图象上;
    3×1=2,则点C在函数图象上.
    (3)∵k>0,
    ∴当x<0时,y随x的增大而减小.
    ∵当x=-3时,y=-1,当x=-1时,y=-2,
    ∴当-3<x<-1时,-2<y<-1.
    18、(1)一次函数,反比例,(2).
    【解析】
    (1)点C在反比例函数图象上,且△OCD的面积为3,并且图象在二、四象限,可求出的值,确定反比例函数的关系式,再确定点C的坐标,用A、C的坐标用待定系数法可确定一次函数的关系式, (2)利用一次函数的关系式可求出于坐标轴的交点坐标,与反比例函数关系式联立可求出F点坐标,利用对称可求出点E坐标,最后由三角形的面积公式求出结果.
    【详解】
    解:(1)∵点C在反比例函数图象上,且△OCD的面积为3,
    ∴ , ∴,
    ∵反比例函数的图象在二、四象限, ∴,
    ∴反比例函数的解析式为,
    把C代入为: 得,, ∴C,
    把A(0,4),C(3,-2)代入一次函数得:
    ,解得:, ∴一次函数的解析式为.
    答:一次函数和反比例函数的解析式分别为:,.
    (2)一次函数与轴的交点B(2,0).
    ∵点B关于y轴对称点E, ∴点E(-2,0), ∴BE=2+2=4,
    一次函数和反比例函数的解析式联立得:,解得:
    , ∴点,
    ∴.
    答:△EFC的面积为1.
    考查反比例函数的图象和性质、一次函数的图象和性质以及方程组、三角形的面积等知识,理解反比例函数、一次函数图象上点的坐标的特征,是解决问题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    首先根据一次函数y=2x与y=6-kx图象的交点纵坐标为4,代入一次函数y=2x求得交点坐标为(2,4),然后代入y=6-kx求得k值即可.
    【详解】
    ∵一次函数y=2x与y=6-kx图象的交点纵坐标为2,
    ∴4=2x,
    解得:x=2,
    ∴交点坐标为(2,4),
    代入y=6-kx,6-2k=4,解得k=1.
    故答案为:1.
    本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=2x与y=6-kx两个解析式.
    20、
    【解析】
    根据直线y=kx+b与y轴交于点B(1,1),以及函数的增减性,即可求出不等式kx+b>1的解集.
    【详解】
    解:∵直线y=kx+b与x轴交于点A(3,1),与y轴交于点B(1,1),
    ∴y随x的增大而减小,
    ∴不等式kx+b>1的解集是x<1.
    故答案为x<1.
    本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标
    21、4
    【解析】
    根据题意可证明四边形EFGH为菱形,故可求出面积.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°,
    ∵E、F、G、H分别是四条边的中点,
    ∴AE=DG=BE=CG,AH=DH=BF=CF,
    ∴△AEH≌△DGH≌△BEF≌△CGF(SAS),
    ∴EH=EF=FG=GH,
    ∴四边形EFGH是菱形,
    ∵HF=2,EG=4,
    ∴四边形EFGH的面积为HF·EG=×2×4=4.
    此题主要考查菱形的判定与面积求法,解题的关键是熟知特殊平行四边形的性质与判定定理.
    22、1.
    【解析】
    试题分析:∵▱ABCD的周长为20cm,
    ∴2(BC+CD)=20,则BC+CD=2.
    ∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=6,
    ∴OD=OB=BD=3.
    又∵点E是CD的中点,
    ∴OE是△BCD的中位线,DE=CD,
    ∴OE=BC,
    ∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=5+3=1,
    即△DOE的周长为1.
    故答案是1.
    考点:三角形中位线定理.
    23、5; 1.
    【解析】
    首先根据其平均数为5求得的值,然后再根据中位数及方差的计算方法计算即可.
    【详解】
    解:数据3,4,,6,7的平均数是5,
    解得:,
    中位数为5,
    方差为.
    故答案为:5;1.
    本题考查了平均数、中位数及方差的定义与求法,熟练掌握各自的求法是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)﹣2x2+300x﹣8800;(2)若每个月的利润为2250元,定价应为65元.
    【解析】
    (1)设每件商品的售价为x元(x为正整数),则每个月可卖出[100-2(x-60)]件,根据销售利润=每件的利润×销售数量,即可得出结论;
    (2)由(1)的结论结合每个月的利润为2250元,即可得出关于x的一元二次方程,解之取大于等于60小于等于80的值即可得出结论.
    【详解】
    (1)设每件商品的售价为x元(x为正整数),则每个月可卖出[100﹣2(x﹣60)]件,
    ∴每个月的销售利润为(x﹣40)[100﹣2(x﹣60)]=﹣2x2+300x﹣8800;
    (2)根据题意得:﹣2x2+300x﹣8800=2250,
    解得:x1=65,x2=85(不合题意,舍去).
    答:若每个月的利润为2250元,定价应为65元.
    本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据数量关系,列出代数式;(2)找准等量关系,正确列出一元二次方程.
    25、详见解析.
    【解析】
    (1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.
    【详解】
    (1)∵四边形ABCD是平行四边形,
    ∴AD∥CB,AD=CB,
    ∴∠DAE=∠BCF,
    在△ADE和△CBF中,
    ∴△ADE≌△CBF,
    ∴DE=BF.
    (2)由(1),可得∴△ADE≌△CBF,
    ∴∠ADE=∠CBF,
    ∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,
    ∴∠DEF=∠BFE,
    ∴DE∥BF,
    又∵DE=BF,
    ∴四边形DEBF是平行四边形.
    考点:平行四边形的判定与性质;全等三角形的判定与性质.
    26、,证明见解析;的最小值是,;如图3,当点E运动到DC边上时,大小不发生变化,理由见解析.
    【解析】
    先证明和是等边三角形,再证明≌,可得结论;
    由≌,易证得是正三角形,继而可得当动点E运动到当,即E为AD的中点时,BE的最小,根据等边三角形三线合一的性质可得BE和EF的长,并求此时的面积;
    同理得:≌,则可得,所以,则A、B、M、D四点共圆,可得.
    【详解】

    证明:、F的速度相同,且同时运动,

    又四边形ABCD是菱形,



    是等边三角形,
    同理也是等边三角形,

    在和中,

    ≌,

    由得:≌,



    是等边三角形,

    如图2,当动点E运动到,即E为AD的中点时,BE的最小,此时EF最小,
    ,,

    的最小值是,
    中,,,



    如图3,当点E运动到DC边上时,大小不发生变化,
    在和中,

    ≌,






    、B、M、D四点共圆,

    此题是四边形的综合题,考查了菱形的性质、等边三角形的判定与性质、四点共圆的判定和性质、垂线段最短以及全等三角形的判定与性质注意证得≌是解此题的关键.
    题号





    总分
    得分
    批阅人
    相关试卷

    2024年江苏省沛县九年级数学第一学期开学经典模拟试题【含答案】: 这是一份2024年江苏省沛县九年级数学第一学期开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山西大附中数学九年级第一学期开学经典模拟试题【含答案】: 这是一份2024-2025学年山西大附中数学九年级第一学期开学经典模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年辽宁省沈阳市名校数学九上开学经典模拟试题【含答案】: 这是一份2024-2025学年辽宁省沈阳市名校数学九上开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map