终身会员
搜索
    上传资料 赚现金

    2024年南安市数学九年级第一学期开学学业水平测试模拟试题【含答案】

    立即下载
    加入资料篮
    2024年南安市数学九年级第一学期开学学业水平测试模拟试题【含答案】第1页
    2024年南安市数学九年级第一学期开学学业水平测试模拟试题【含答案】第2页
    2024年南安市数学九年级第一学期开学学业水平测试模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年南安市数学九年级第一学期开学学业水平测试模拟试题【含答案】

    展开

    这是一份2024年南安市数学九年级第一学期开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有( )
    A.2个B.3个C.4个D.1个
    2、(4分)如图,已知正方形面积为36平方厘米,圆与各边相接,则阴影部分的面积是( )平方厘米.()

    A.18B.7.74C.9D.28.26
    3、(4分)小勇投标训练4次的成绩分别是(单位:环)9,9,x,1.已知这组数据的众数和平均数相等,则这组数据中x是( )
    A.7 B.1 C.9 D.10
    4、(4分)某班5位学生参加中考体育测试的成绩(单位:分)分别是:50、45、36、48、50,则这组数据的众数是( )
    A.36B.45C.48D.50
    5、(4分)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE,下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有( )
    A.1个B.2个C.3个D.4个
    6、(4分)下列计算中,①;②;③;④不正确的有( )
    A.3个B.2个C.1个D.4个
    7、(4分)若一个等腰三角形的腰长为5,底边长为6,则底边上的高为( )
    A.4B.3C.5D.6
    8、(4分)如图,,的顶点在上,交于点,若,则( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,矩形ABCD中,E是AD中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于F,若AB=6,BC=,则CF的长为_______
    10、(4分)已知a=,b=,则a2-2ab+b2的值为____________.
    11、(4分)某干果店本周售出若干千克三种核桃,销售单价、销售量如图所示,则可估算出该店本周销售核桃的平均单价是_______元.
    12、(4分)若一组数据1,2,3,x,0,3,2的众数是3,则这组数据的中位数是_____.
    13、(4分)如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图(1) ,折叠平行四边形,使得分别落在边上的点,为折痕
    (1)若,证明:平行四边形是菱形;
    (2)若 ,求的大小;
    (3)如图(2) ,以为邻边作平行四边形,若,求的大小
    15、(8分)如图,将等边绕点顺时针旋转得到,的平分线交于点,连接、.
    (1)求度数;
    (2)求证:.
    16、(8分)如图,E、F是▱ABCD对角线AC上的两点,且求证:≌;
    17、(10分)甲、乙两班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如表,请根据表中数据解答下列问题
    (1)分别写出甲、乙两班选手进球数的平均数、中位数与众数;
    (2)如果要从这两个班中选出一个班级参加学校的投篮比赛,争取夺得总进球团体的第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?
    18、(10分)解方程组
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在四边形ABCD中,AC,BD相交于点O,AO=OC,BO=OD,∠ABC=90°,则四边形ABCD是________;若AC=5 cm,则BD=________.
    20、(4分)在平面直角坐标系中,将函数的图象向上平移6个单位长度,则平移后的图象与轴的交点坐标为__________.
    21、(4分)一天,明明和强强相约到距他们村庄560米的博物馆游玩,他们同时从村庄出发去博物馆,明明到博物馆后因家中有事立即返回.如图是他们离村庄的距离y(米)与步行时间x(分钟)之间的函数图象,若他们出发后6分钟相遇,则相遇时强强的速度是_____米/分钟.
    22、(4分)如图,矩形ABCD中,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=8,DC=6,则BE的长为______.
    23、(4分)因式分解:a2﹣4=_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平面直角坐标系中,直线分别与轴、轴交于点,,且点的坐标为,点为的中点.
    (1)点的坐标是________,点的坐标是________;
    (2)直线上有一点,若,试求出点的坐标;
    (3)若点为直线上的一个动点,过点作轴的垂线,与直线交于点,设点的横坐标为,线段的长度为,求与的函数解析式.
    25、(10分)直线过点,直线过点,求不等式的解集.
    26、(12分)在学校组织的“学习强国”知识竞赛中,每班参加比赛的人数相同,成绩分为,,,四个等级其中相应等级的得分依次记为分,分,分和分.年级组长张老师将班和班的成绩进行整理并绘制成如下的统计图:
    (1)在本次竞赛中,班级的人数有多少。
    (2)请你将下面的表格补充完整:
    (3)结合以上统计量,请你从不同角度对这次竞赛成绩的结果进行分析(写出两条)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据题中条件,结合图形及角平分线的性质得到结论,与各选项进行比对,排除错误答案,选出正确的结果.
    【详解】
    ∵AD平分∠BAC
    ∴∠DAC=∠DAE
    ∵∠C=90°,DE⊥AB
    ∴∠C=∠E=90°
    ∵AD=AD
    ∴△DAC≌△DAE
    ∴∠CDA=∠EDA
    ∴①AD平分∠CDE正确;
    无法证明∠BDE=60°,
    ∴③DE平分∠ADB错误;
    ∵BE+AE=AB,AE=AC
    ∴BE+AC=AB
    ∴④BE+AC=AB正确;
    ∵∠BDE=90°-∠B,∠BAC=90°-∠B
    ∴∠BDE=∠BAC
    ∴②∠BAC=∠BDE正确.
    故选:B.
    考查了角平分线的性质,解题关键是灵活运用其性质进行分析.
    2、B
    【解析】
    【分析】先求正方形的边长,可得圆的半径,再用正方形的面积减去圆的面积即可.
    【详解】因为6×6=36,所以正方形的边长是6厘米
    36-3.14×(6÷2)2
    =36-28.26
    =7.74(平方厘米)
    故选:B
    【点睛】本题考核知识点:正方形性质.解题关键点:理解正方形基本性质.
    3、C
    【解析】【分析】根据题意可知,x是9,不可能是1.
    【详解】因为这组数据的众数和平均数相等,则这组数据中x是9.
    故选:C
    【点睛】本题考核知识点:众数和平均数.解题关键点:理解众数和平均数的定义.
    4、D
    【解析】
    根据众数的定义,找出这组数据中出现次数最多的数,即可求出答案.
    【详解】
    解:在这组数据50、45、36、48、50中,
    50出现了2次,出现的次数最多,
    则这组数据的众数是50,
    故选D.
    考查了众数,掌握众数的定义是本题的关键,众数是一组数据中出现次数最多的数.
    5、C
    【解析】
    试题分析:由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB<OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.
    解:∵四边形ABCD是平行四边形,
    ∴∠ABC=∠ADC=60°,∠BAD=120°,
    ∵AE平分∠BAD,
    ∴∠BAE=∠EAD=60°
    ∴△ABE是等边三角形,
    ∴AE=AB=BE,
    ∵AB=BC,
    ∴AE=BC,
    ∴∠BAC=90°,
    ∴∠CAD=30°,故①正确;
    ∵AC⊥AB,
    ∴S▱ABCD=AB•AC,故②正确,
    ∵AB=BC,OB=BD,且BD>BC,
    ∴AB<OB,故③错误;
    ∵CE=BE,CO=OA,
    ∴OE=AB,
    ∴OE=BC,故④正确.
    故选C.
    6、A
    【解析】
    直接利用积的乘方运算法则、单项式乘以单项式的法则、同底数幂的除法法则分别计算得出答案即可.
    【详解】
    解:①,故此选项错误,符合题意;
    ②,故此选项错误,符合题意;
    ③,故此选项正确,不符合题意;
    ④,故此选项错误,符合题意;
    故选:A
    此题主要考查了积的乘方、单项式乘以单项式、同底数幂的除法等运算知识,正确掌握运算法则是解题关键.
    7、A
    【解析】
    根据等腰三角形底边高线和中线重合的性质,则BD=DC=3,可以根据勾股定理计算底边的高AD=.
    【详解】
    解:如图,在△ABC中,AB=AC=5,AD⊥BC,
    则AD为BC边上的中线,即D为BC中点,
    ∴BD=DC=3,
    在直角△ABD中AD==1.
    故选:A.
    本题考查了勾股定理在直角三角形中的正确运用,考查了等腰三角形底边高线、中线重合的性质,本题中根据勾股定理正确计算AD是解题的关键.
    8、B
    【解析】
    由平行四边形的性质得出∠BAD=∠C=100°,AD∥BC,由平行线的性质得出∠2=∠ADE,∠ADE+∠BAD+∠1=180°,得出∠1+∠2=180°-∠BAD=80°即可.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴∠BAD=∠C=100°,AD∥BC,
    ∴∠2=∠ADE,
    ∵l1∥l2,
    ∴∠ADE+∠BAD+∠1=180°,
    ∴∠1+∠2=180°-∠BAD=80°;
    故选:C.
    本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质和平行线的性质是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2
    【解析】
    分析:根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG;然后利用“HL”证明△EDF和△EGF全等,根据全等三角形的对应边相等可证得DF=GF;设DF=x,接下来表示出FC、BF,在Rt△BCF中,利用勾股定理列式进行计算即可得解.
    详解:∵E是AD的中点,
    ∴AE=DE.
    ∵△ABE沿BE折叠后得到△GBE,
    ∴AE=EG,AB=BG,
    ∴ED=EG.
    ∵在矩形ABCD中,∠A=∠D=90°,
    ∴∠EGF=90°.
    ∵在Rt△EDF和Rt△EGF中,ED=EG,EF=EF,
    ∴Rt△EDF≌Rt△EGF,
    ∴DF=FG.
    设CF=x,则DF=6-x,BF=12-x.
    在Rt△BCF中,()2+x2=(12-x)2,
    解得x=2.
    ∴CF=2.
    故答案为:2.
    点睛:本题考查了矩形的性质,勾股定理 , 翻折变换(折叠问题),全等三角形的判定与性质.根据“HL”证明Rt△EDF≌Rt△EGF是解答本题的关键.
    10、8
    【解析】
    二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.
    【详解】
    a2-2ab+b2=(a-b)2=.
    故答案为8.
    本题考查了二次根式的混合运算,熟练化简二次根式是解题的关键.
    11、1
    【解析】
    根据题意,结合图形可知,所求单价即为加权平均数,利用加权平均数的定义计算解答即可
    【详解】
    由加权平均数得,24×25%+20×1%+10×60%=6+3+6=1,
    故答案为:1.
    考查了加权平均数的定义,熟记加权平均数的定义,掌握有理数的混合运算法则是解题关键.
    12、1
    【解析】
    找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
    【详解】
    解:∵1,1,3,x,0,3,1的众数是3,
    ∴x=3,
    先对这组数据按从小到大的顺序重新排序0,1,1,1,3,3,3,位于最中间的数是1,
    ∴这组数的中位数是1.
    故答案为:1;
    本题考查了等腰直角三角形,勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.
    13、1
    【解析】
    由于∠C=90°,∠ABC=60°,可以得到∠A=10°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=10°,BD=AD=6,再由10°角所对的直角边等于斜边的一半即可求出结果.
    【详解】
    ∵∠C=90°,∠ABC=60°,
    ∴∠A=10°.
    ∵BD平分∠ABC,
    ∴∠CBD=∠ABD=∠A=10°,
    ∴BD=AD=6,
    ∴CD=BD=6×=1.
    故答案为1.
    本题考查了直角三角形的性质、含10°角的直角三角形、等腰三角形的判定以及角的平分线的性质.解题的关键是熟练掌握有关性质和定理.
    三、解答题(本大题共5个小题,共48分)
    14、(1)详见解析;(2)30°;(3)45°.
    【解析】
    (1)利用面积法解决问题即可.
    (2)分别求出∠BAD,∠BAB′,∠DAD′即可解决问题.
    (3)如图2中,延长AE到H,使得EH=EA,连接CH,HG,EF,AC.想办法证明E,H,G,C四点共圆,可得∠EGC=∠EHC=45°.
    【详解】
    (1)证明:如图1中,

    ∵四边形ABCD是平行四边形,AE⊥BC,AF⊥CD,
    ∴S平行四边形ABCD=BC•AE=CD•AF,
    ∵AE=AF,
    ∴BC=CD,
    ∴平行四边形是菱形;
    (2)解:如图1中,
    ∵四边形ABCD是平行四边形,
    ∴∠C=∠BAD=110°,
    ∵AB∥CD,
    ∴∠C+∠B=180°,
    ∴∠B=∠D=70°,
    ∵AE⊥BC,AF⊥CD.
    ∴∠AEB=∠AFD=90°,
    ∴∠BAE=∠DAF=20°,
    由翻折变换的性质可知:∠BAB′=2∠BAE=40°,∠DAD′=2∠DAF=40°,
    ∴∠B′AD′=110°﹣80°=30°.
    (3)解:如图2中,延长AE到H,使得EH=EA,连接CH,HG,EF,AC.

    ∵EA=EC,∠AEC=90°,
    ∴∠ACE=45°,
    ∵∠AEC+∠AFC=180°,
    ∴A,B,C,F四点共圆,
    ∴∠AFE=∠ACE=45°,
    ∵四边形AEGF是平行四边形,
    ∴AF∥EG,AE=FG,
    ∴∠AFE=∠FEG=45°,
    ∴EH=AE=FG,EH∥FG,
    ∴四边形EHGF是平行四边形,
    ∴EF∥HG,
    ∴∠FEG=∠EGH=45°
    ∵EC=AE=EH,∠CEH=90°,
    ∴∠ECH=∠EHC=45°,
    ∴∠ECH=∠EGH,
    ∴E,H,G,C四点共圆,∠EGC=∠EHC=45°.
    本题属于几何变换综合题,考查了平行四边形的性质和判定,菱形的判定,翻折变换,四点共圆,圆周角定理等知识,解题的关键是学会添加常用辅助线,利用四点共圆解决问题,属于中考压轴题.
    15、(1) ;(2)证明见解析.
    【解析】
    (1)由等边三角形的性质可得,,由旋转的性质可得,,由等腰三角形的性质可求解;
    (2)由“”可证,可得,即可证.
    【详解】
    解:(1)是等边三角形

    等边绕点顺时针旋转得到
    ,,

    (2)和是等边三角形

    平分
    ,,,
    本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.
    16、证明见解析.
    【解析】
    根据平行四边形性质得出AD=BC,AD//BC,根据平行线性质求出∠DAF=∠BCE,求出∠AFD=∠CEB,再根据AAS证△ADF≌△CBE即可.
    【详解】
    证明:,


    四边形ABCD是平行四边形


    在和中,

    ≌.
    本题考查了平行四边形性质、平行线的性质、全等三角形的性质和判定等知识点,关键是推出证△ADF和△CBE全等的三个条件,题目比较好,难度适中.
    17、(1)甲班选手进球数的平均数为7,中位为7,众数为7;乙班选手进球数的平均数为7,中位为7,众数为7;(2)要争取夺取总进球团体第一名,应选乙班;要进入学校个人前3名,应选甲班.
    【解析】
    (1)利用平均数、中位数和众数的定义直接求出;(2)根据方差和个人发挥的最好成绩进行选择.
    【详解】
    解:(1)甲班选手进球数的平均数为7,中位为7,众数为7;
    乙班选手进球数的平均数为7,中位为7,众数为7;
    (2)甲班S12= [(10﹣7)2 +(9﹣7)2+(8﹣7)2+1×(7﹣7)2+0×(6﹣7)2+3×(5﹣7)2]=2.6,
    乙班S22= [0×(10﹣7)2+(9﹣7)2+2×(8﹣7)2+5×(7﹣7)2+(6﹣7)2+2×(5﹣7)2]=1.1.
    ∵甲方差>乙方差,
    ∴要争取夺取总进球团体第一名,应选乙班.
    ∵甲班有一位百发百中的出色选手,
    ∴要进入学校个人前3名,应选甲班.
    本题考查了平均数,中位数,方差的意义.平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
    18、原方程组的解为:,
    【解析】
    把第一个方程代入第二个方程,得到一个关于x的一元二次方程,解方程求出x,把x代入第一个方程,求出y即可.
    【详解】
    解:
    把①代入②得:x2-4x(x+1)+4(x+1)2=4,
    x2+4x=0,
    解得:x=-4或x=0,
    当x=-4时,y=-3,
    当x=0时,y=1,
    所以原方程组的解为:,.
    故答案为:,.
    本题考查了解高次方程,降次是解题的基本思想.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、矩形 5cm
    【解析】
    试题解析:∵AO=OC,BO=OD,
    ∴四边形ABCD是平行四边形.
    ∵∠ABC=90°,
    ∴四边形ABCD是矩形.
    ∴AC=BD
    ∵AC=5cm
    ∴BD=5cm
    20、.
    【解析】
    先根据平移特点求出新函数解析式,然后再求解新函数与x轴的交点坐标.
    【详解】
    解:由“上加下减”的平移规律可知:将函数的图象向上平移6个单位长度所得到的的新函数的解析式为:,
    令,得:,
    解得:,
    ∴与轴的交点坐标为,
    故答案为:.
    本题考查的是一次函数的图象与几何变换,熟知平移的规律——上加下减,左加右减是解答此题的关键.
    21、80
    【解析】
    根据图形找出点A、B的坐标利用待定系数法求出线段AB的函数解析式,代入x=6求出点F的坐标,由此即可得出直线OF的解析式.
    【详解】
    .解:观察图形可得出:点A的坐标为(5,560),点B的坐标为(12,0),
    设线段AB的解析式为y=kx+b(k≠0),
    ∴ ,解得:,
    ∴线段AB的解析式为y=﹣80x+960(5≤x≤12).
    当x=6时,y=480,
    ∴点F的坐标为(6,480),
    ∴直线OF的解析式为y=80x.
    所以相遇时强强的速度是80米/分钟.
    故答案为80
    本题考查了一次函数的应用以及待定系数法求出函数解析式,观察图形找出点的坐标再利用待定系数法求出函数解析式是解题的关键.
    22、
    【解析】
    ∵四边形ABCD为矩形,
    ∴AB=DC=6,BC=AD=8,AD∥BC,∠B=90°.
    ∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,
    ∴∠DAC=∠D′AC.
    ∵AD∥BC,
    ∴∠DAC=∠ACB.
    ∴∠D′AC=∠ACB.
    ∴AE=EC.
    设BE=x,则EC=8-x,AE=8-x.
    ∵在Rt△ABE中,AB2+BE2=AE2,
    ∴62+x2=(8-x)2,解得x=,即BE的长为.
    故答案是:.
    23、(a+2)(a﹣2).
    【解析】
    试题分析:直接利用平方差公式分解因式a2﹣4=(a+2)(a﹣2).故答案为(a+2)(a﹣2).
    【考点】因式分解-运用公式法.
    二、解答题(本大题共3个小题,共30分)
    24、(1),;(2)或;(3).
    【解析】
    (1)将点A(8,0)代入可求得一次函数解析式,再令x=0即可得到B点坐标;因为C是A、B中点,利用中点坐标公式可求出C点坐标;
    (2)先求出△AOC的面积,则△NOA的面积为△AOC的面积的一半,设N点的坐标,可根据列出方程求解;
    (3)可先求出直线OC的函数解析式,把点P、Q坐标表示出来,分情况讨论即可得出答案.
    【详解】
    解:(1)将A(8,0)代入得:,解得:b=6;

    令x=0,得:y=6,∴点的坐标为
    ∵C为AB中点,
    ∴的坐标为
    故答案为:点的坐标为,的坐标为;
    (2)或
    由题可得S△AOC=

    ∴S△NOA=

    S△NOA=
    解得:n=6或n=10
    将n=6代入得;
    将n=10代入得;
    ∴或
    (3)依照题意画出图形,如图所示.
    解图1 解图2
    ∵.
    设直线的解析式为,
    则有,解得:,
    ∴直线的解析式为.
    ∵点在直线上,点在直线上,点的横坐标为,轴,
    ∴,
    当时,;
    当时,.
    故与的函数解析式为.
    本题考查待定系数法求函数解析式,坐标系中三角形面积的算法以及线段长度的算法,在计算的时注意分类讨论.
    25、
    【解析】
    将代入,可解得k的值,将代入,可解得m的值,再将k和m的值代入不等式,解不等式即可
    【详解】
    解:将代入得:,解得:k=1;
    将代入得:,解得:;
    ∴,
    则可得
    解得
    故答案为:
    本题考查待定系数法求一次函数的解析式以及不等式的解法,,比较简单,应熟练掌握
    26、(1)9人;(2)见解析;(3)略.
    【解析】
    (1)根据一班的成绩统计可知一共有25人,因为每班参加比赛的人数相同,用总人数乘以C级以上的百分比即可得出答案,
    (2)根据平均数、众数、中位数的概念,结合一共有25人,即可得出答案.
    (3)分别从级及以上人数和众数的角度分析那个班成绩最好即可.
    【详解】
    解:(1)班有人,人.
    所以班C级人数有9人
    (2)请你将下面的表格补充完整:
    (3)从级及以上人数条看,班的人数多于班人数,此时班的成绩好些
    从众数的角度看,班的众数高于班众数,此时802班的成绩差一些.
    本题考查条形统计图和扇形统计图,熟练掌握计算法则是解题关键.
    题号





    总分
    得分
    进球数/个
    10
    9
    8
    7
    6
    5

    1
    1
    1
    4
    0
    3

    0
    1
    2
    5
    0
    2
    成绩
    班级
    平均数(分)
    中位数 (分)
    众数 (分)
    B级及以上人数


    平均数(分)
    中位数(分)
    众数(分)
    级及以上人数

    87.6
    90
    18

    87.6
    100

    相关试卷

    2024年河北省张家口市数学九年级第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2024年河北省张家口市数学九年级第一学期开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年海南省琼中县联考数学九年级第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2024年海南省琼中县联考数学九年级第一学期开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年哈尔滨市风华中学数学九年级第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2024年哈尔滨市风华中学数学九年级第一学期开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map