2024年内蒙古呼伦贝尔市、兴安盟九上数学开学复习检测模拟试题【含答案】
展开
这是一份2024年内蒙古呼伦贝尔市、兴安盟九上数学开学复习检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)点A,B,C,D在数轴上的位置如图所示,则实数对应的点可能是
A.点AB.点BC.点CD.点D
2、(4分)如图,△ABC以点C为旋转中心,旋转后得到△EDC,已知AB=1.5,BC=4,AC=5,则DE=( )
A.1.5B.3C.4D.5
3、(4分)下列各图象中,不是y关于x的函数图象的是( )
A.B.C.D.
4、(4分)如图,直线与直线交于点,则方程组解是( )
A.B.C.D.
5、(4分)若代数式有意义,则实数x的取值范围是( )
A.x≥1B.x≥2C.x>1D.x>2
6、(4分)如图,在一个高为6米,长为10米的楼梯表面铺地毯,则地毯长度至少是( )
A.6米B.10米C.14米D.16米
7、(4分)小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是( )
A.B.C.D.
8、(4分)如图所示,一次函数y1=kx+4与y2=x+b的图象交于点A.则下列结论中错误的是( )
A.K<0,b>0B.2k+4=2+b
C.y1=kx+4的图象与y轴交于点(0,4)D.当x<2时,y1>y2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,小军在地面上合适的位置平放了一块平面镜(平面镜的高度忽略不计),刚好在平面镜中的点处看到旗杆顶部,此时小军的站立点与点的水平距离为,旗杆底部与点的水平距离为.若小军的眼睛距离地面的高度为(即),则旗杆的高度为_____.
10、(4分)将直线y=2x﹣2向右平移1个单位长度后所得直线的解析式为y=_____.
11、(4分)如图,正方形ABCD的边长为4,P为对角线AC上一点,且CP = 3,PE⊥PB交CD于点E,则PE =____________.
12、(4分)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当C点落在直线y=2x-6上时,线段BC扫过的区域面积为________.
13、(4分)点与点关于轴对称,则点的坐标是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)用一条长48cm的绳子围矩形,
(1)怎样围成一个面积为128cm2的矩形?
(2)能围成一个面积为145cm2的矩形吗?为什么?
15、(8分)为了把巴城建成省级文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老张某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段(以1小时为一个时间段),对闯红灯的人数制作了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:
(1)问这一天上午7:00~12:00这一时间段共有多少人闯红灯?
(2)请你把条形统计图补充完整,并求出扇形统计图中9~10点,10~11点所对应的圆心角的度数.
(3)求这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数.
16、(8分) (1)用“<”“>”或“=”填空:
51+31______1×5×3;
31+11______1×3×1.
(﹣3)1+11_____1×(﹣3)×1;
(﹣4)1+(﹣4)1______1×(﹣4)×(﹣4).
(1)观察以上各式,你发现它们有什么规律吗?你能用一个含有字母a,b的式子表示上述规律吗?再换几个数试一试.
(3)运用你所学的知识说明你发现的规律的正确性.
17、(10分)下表是某网络公司员工月收人情况表.
(1)求此公司员工月收人的中位数;
(2)小张求出这个公司员工月收人平均数为元,若用所求平均数反映公司全体员工月收人水平,合适吗?若不合适,用什么数据更好?
18、(10分) (1)计算:﹣+×
(2)解方程:3x(x+4)=2(x+4)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:=______.
20、(4分)如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是____.
21、(4分)如图,已知函数和的图象交于点P, 则根据图象可得,关于的二元一次方程组的解是_____________。
22、(4分)如图,已知一块直角三角板的直角顶点与原点重合,另两个顶点,的坐标分别为,,现将该三角板向右平移使点与点重合,得到,则点的对应点的坐标为__________.
23、(4分)已知一组数据10,10,x,8的众数与它的平均数相等,则这组数的中位数是____.
二、解答题(本大题共3个小题,共30分)
24、(8分)银隆百货大楼服装柜在销售中发现:某品牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.
(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?
(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.
25、(10分)如图,在平行四边形中,的平分线交于点,的平分线交于点.
(1)若,,求的长.
(2)求证:四边形是平行四边形.
26、(12分)计算:
(1)×.
(2).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据被开方数越大算术平方根越大,可得的大小,根据数的大小,可得答案.
【详解】
,
,
实数对应的点可能是B点,
故选B.
本题考查了实数与数轴,利用被开方数越大算术平方根越大得出是解题关键.
2、A
【解析】
根据旋转的性质,得出△ABC≌△EDC,再根据全等三角形的对应边相等即可得出结论.
【详解】
由旋转可得,△ABC≌△EDC,
∴DE=AB=1.5,
故选A.
本题主要考查了旋转的性质的运用,解题时注意:旋转前、后的图形全等.
3、B
【解析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.
【详解】
解:由函数的定义可知,
每一个给定的x,都有唯一确定的y值与其对应的才是函数,
故选项A、C、D中的函数图象都是y关于x的函数,B中的不是,
故选:B.
主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
4、B
【解析】
根据一次函数与二元一次方程组的关系解答即可.
【详解】
∵直线与直线交于点,
∴方程组即的解是.
故选B.
本题主要考查一次函数函数与二元一次方程组的关系,函数图象交点坐标为两函数解析式组成的方程组的解.
5、B
【解析】
根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x的不等式组,解不等式组即可得.
【详解】
由题意得
,
解得:x≥2,
故选B.
本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.
6、C
【解析】
当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.
【详解】
解:由勾股定理得:
楼梯的水平宽度,
地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,
∴地毯的长度至少是米.
故选:C.
本题考查了勾股定理的应用,与实际生活相联系,加深了学生学习数学的积极性.
7、B
【解析】
∵y轴表示当天爷爷离家的距离,X轴表示时间
又∵爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,
∴刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近
又知去时是跑步,用时较短,回来是慢走,用时较多
∴选项B中的图形满足条件.
故选B.
8、A
【解析】
利用一次函数的性质结合函数的图象逐项分析后即可确定正确的选项.
【详解】
解:∵y1=kx+4在第一、二、四象限,y2=x+b的图象交于y轴的负半轴,
∴k<0,b<0
故A错误;
∵A点为两直线的交点,
∴2k+4=2+b,
故B正确;
当x=0时y1=kx+4=4,
∴y1=kx+4的图象与y轴交于点(0,4),
故C正确;
由函数图象可知当x<2时,直线y2的图象在y1的下方,
∴y1>y2,
故D正确;
故选:A.
本题考查两直线的交点问题,能够从函数图象中得出相应的信息是解题的关键.注意数形结合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
分析:根据题意容易得到△CDE∽△CBA,再根据相似三角形的性质解答即可.
详解:由题意可得:AB=1.5m,BC=2m,DC=12m,
△ABC∽△EDC,
则,
即,
解得:DE=1,
故答案为1.
点睛:本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程.
10、2x﹣4
【解析】
试题解析:从原直线上找一点(1,0),向右平移一个单位长度为(2,0),
它在新直线上,可设新直线的解析式为:,代入得
故所得直线的解析式为:
故答案为:
11、
【解析】
连接BE,设CE的长为x
∵AC为正方形ABCD的对角线,正方形边长为4,CP=3
∴∠BAP=∠PCE=45°,AP=4-3=
∴BP2=AB2+AP2-2AB×AP×cs∠BAP=42+()2-2×4××=10
PE2=CE2+CP2-2CE×CP×cs∠PCE=(3)2+x2-2x×3×=x2-6x+18
BE2=BC2+CE2=16+x2 在Rt△PBE中,BP2+PE2=BE2,即:10+x2-6x+18=16+x2,解得:x=2
∴PE2=22-6×2+18=10 ∴PE=.
12、5
【解析】
解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=1.
∵∠CAB=90°,BC=3,∴AC=4,∴A′C′=4.
∵点C′在直线y=4x﹣6上,∴4x﹣6=4,解得 x=3.
即OA′=3,∴CC′=3﹣1=4,∴S▱BCC′B′=4×4=5 (cm4).
即线段BC扫过的面积为5cm4.故答案为5.
13、
【解析】
已知点,根据两点关于轴的对称,横坐标不变,纵坐标互为相反数,即可得出Q的坐标.
【详解】
∵点)与点Q关于轴对称,
∴点Q的坐标是:.
故答案为
考查关于轴对称的点的坐标特征,横坐标不变,纵坐标互为相反数.
三、解答题(本大题共5个小题,共48分)
14、 (1)围成长为1cm、宽为8cm的矩形;(2)不能围成一个面积为145cm2的矩形.
【解析】
设矩形的一边长为xcm,则该边的邻边长为(24﹣x)cm.
(1)根据矩形的面积公式结合矩形的面积为128cm2,即可得出关于x的一元二次方程,解之即可得出结论;
(2)根据矩形的面积公式结合矩形的面积为145cm2,即可得出关于x的一元二次方程,由根的判别式△=﹣4<3,即可得出不能围成一个面积为145cm2的矩形.
【详解】
解:设矩形的一边长为xcm,则该边的邻边长为(24﹣x)cm.
(1)根据题意得:x(24﹣x)=128,
解得:x1=1,x2=8,
∴24﹣x=8或1.
答:围成长为1cm、宽为8cm的矩形,该矩形的面积为128cm2.
(2)根据题意得:x(24﹣x)=145,
整理得:x2﹣24x+145=3.
∵△=(﹣24)2﹣4×1×145=﹣4<3,
∴此方程无实根,
∴不能围成一个面积为145cm2的矩形.
本题主要考查一元二次方程的应用,能够根据题意列出方程,并利用根的判别式判断根的情况是解题的关键.
15、(1)100人闯红灯(2)见解析;(3)众数为15人,中位数为20人
【解析】
(1)根据11﹣12点闯红灯的人数除以所占的百分比即可求出7﹣12这一时间段共有的人数.
(2)根据7﹣8点所占的百分比乘以总人数即可求出7﹣8点闯红灯的人数,同理求出8﹣9点的人数,然后可计算出10﹣11点的人数,补全条形统计图即可;求出9﹣10及10﹣11点的百分比,分别乘以360度即可求出圆心角的度数.
(3)找出这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数即可.
【详解】
解:(1)根据题意得:40÷40%=100(人),
∴这一天上午7:00~12:00这一时间段共有100人闯红灯.
(2)根据题意得:7﹣8点的人数为100×20%=20(人),
8﹣9点的人数为100×15%=15(人),
9﹣10点占=10%,
10﹣11点占1﹣(20%+15%+10%+40%)=15%,人数为100×15%=15(人).
补全图形,如图所示:
9~10点所对的圆心角为10%×360°=36°,10~11点所对应的圆心角的度数为15%×360°=54°.
(3)根据图形得:这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数为15人,中位数为20人.
16、 (1)>,>,>,=;(1)如果a、b是两个实数,则有a1+b1≥1ab;(3)证明见解析.
【解析】
(1)通过计算可比较上述算式的大小;
(1)由于(a-b)1≥0,所以a1+b1≥1ab
(3)证明结论时根据完全平方的计算结果是非负数证明即可.
【详解】
解:(1)51+31>1×5×3;
31+11>1×3×1.
(﹣3)1+11>1×(﹣3)×1;
(﹣4)1+(﹣4)1=1×(﹣4)×(﹣4)
(1)一般结论是:如果a、b是两个实数,则有a1+b1≥1ab;
(3)∵(a﹣b)1≥0,
∴a1﹣1ab+b1≥0,
∴a1+b1≥1ab.
本题主要考查实数的大小的比较数字的变化规律,通过阅读题目,发现规律实质上是完全平方公式的变形:因为(a-b)1≥0,所以a1+b1≥1ab
17、(1)3000元;(2)不合适,利用中位数更好.
【解析】
(1)根据中位数的定义首先找到25的最中间的数,再确定对应的工资数即可;
(2)先分析25人的收入与平均工资关系,根据月收入平均数为6080元,和25名员工的收入进行比较即可.
【详解】
25个数据按大小顺序排列,最中间的是第13个数,
从收入表中可看出,第13个员工的工资数是3000元,
因此,中位数为元;
用所求平均数反应公司全体员工月收入水平不合适;
这个公司员工月收入平均数为6080元,但在25名员工中,仅有3名员工的收入在平均数以上,而另有22名员工收入在平均数以下,因此,用平均数反映所有员工的月收入不合适,
利用中位数更好.
此题考查了平均数、中位数,用到的知识点是中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.
18、 (1);(2)x1=,x2=﹣1.
【解析】
(1)先化简二次根式,二次根式乘法运算,然后计算加减法;
(2)先移项,再用因式分解即可.
【详解】
解:(1)原式=﹣+2=;
(2)由原方程,得
(3x﹣2)(x+1)=0,
所以3x﹣2=0或x+1=0,
解得x1=,x2=﹣1.
本题考查的是二次根式的混合运算和方程求解,熟练掌握因式分解和化简是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
解:=;故答案为:.
点睛:此题考查了二次根式的乘法,掌握二次根式的运算法则:乘法法则是本题的关键.
20、1
【解析】
试题解析:∵菱形ABCD的对角线AC=6,BD=8,
∴菱形的面积S=AC•BD=×8×6=1.
考点:菱形的性质.
21、
【解析】
由图可知:两个一次函数的交点坐标为(-4,-2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
【详解】
函数y=ax+b和y=kx的图象交于点P(-4,-2),
即x=-4,y=-2同时满足两个一次函数的解析式.
所以关于x,y的方程组的解是.
故答案为:.
本题考查了一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
22、
【解析】
根据A点的坐标,得出OA的长,根据平移的条件得出平移的距离,根据平移的性质进而得出答案.
【详解】
∵A(-1,0),
∴OA=1,
∵一个直角三角板的直角顶点与原点重合,现将该三角板向右平移使点A与点O重合,得到△OCB′,
∴平移的距离为1个单位长度,
∵点B的坐标为
∴点B的对应点B′的坐标是,
故答案为:.
此题主要考查根据平移的性质求点坐标,熟练掌握,即可解题.
23、10
【解析】
试题分析:由题意可知这组数据的众数为10,再根据平均数公式即可求得x的值,最后根据中位数的求解方法求解即可.
解:由题意得这组数据的众数为10
∵数据10,10,x,8的众数与它的平均数相等
∴,解得
∴这组数据为12,10,10,8
∴这组数的中位数是10.
考点:统计的应用
点评:统计的应用是初中数学的重点,是中考必考题,熟练掌握各种统计量的计算方法是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)每件童装应定价80元.(2)当降价15元,即以85元销售时,最高利润值达1250元.
【解析】
(1)首先设每件降价x元,则每件实际盈利为(100-60-x)元,销售量为(20+2x)件,根据每件盈利×销售量=每天盈利,列方程求解,求出x的值,并根据题意“扩大销售量,减少内存”选择正确的定价.
(2)设每天销售这种童装利润为y,利用上述关系式列出函数关系式,利用配方法即可求出何时有最高利润以及最高利润
【详解】
(1)设每件童装应降价x元,由题意得:
(100−60−x)(20+2x)=1200,
解得:x1=10,x2=20,
因要减少库存,故取 x=20,
答:每件童装应定价80元.
(2)1200不是最高利润,
y=(100−60−x)(20+2x)
=−2x 2+60x+800
=−2(x−15)2+1250
故当降价15元,即以85元销售时,最高利润值达1250元.
此题考查了二次函数的应用以及一元二次方程的应用,利用函数关系和基本的数量关系列方程求解是本题的关键.
25、(1);(2)证明见解析.
【解析】
(1)根据等腰三角形的性质即可求解;
(2)根据角平分线的性质及平行线的判定得到,再根据即可证明.
【详解】
(1)解:∵四边形为平形四边形
∴
∵平分
∴
∴
∴,
∴
(2)证明:∵四边形为平行四边形
∴
∵平分
又∴
∴
∴
∴四边形为平行四边形
此题主要考查平行四边形的性质与判定,解题的关键是熟知平行四边形的性质定理.
26、(1);(1)-1.
【解析】
(1)直接利用二次根式的乘法法则,进行化简,得出答案;
(1)先化简二次根式,进而计算得出答案.
【详解】
(1)原式= ×=;
(1)原式=(1﹣4)÷
=﹣1.
本题主要考查二次根式的性质和运算法则,掌握二次根式的性质和运算法则是解题的关键.
题号
一
二
三
四
五
总分
得分
月收入(元)
人数
相关试卷
这是一份2024-2025学年内蒙古呼伦贝尔市九上数学开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年内蒙古海拉尔区九上数学开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年内蒙古呼伦贝尔市、兴安盟中考数学试卷(含详细答案解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。