所属成套资源:中考数学复习重难题型真题再现(全国通用)专题特训(原卷版+解析)
- 中考数学复习重难题型真题再现(全国通用)专题02规律探索题(数式规律、图形规律、与函数有关规律)特训(原卷版+解析) 试卷 0 次下载
- 中考数学复习重难题型真题再现(全国通用)专题05网格作图(平移、旋转、对称)特训(原卷版+解析) 试卷 0 次下载
- 中考数学复习重难题型真题再现(全国通用)专题09函数的实际应用(行程问题、最优方案、阶梯费用)特训(原卷版+解析) 试卷 0 次下载
- 中考数学复习重难题型真题再现(全国通用)专题10函数的实际应用(利润最值、抛物线型、几何图形)特训(原卷版+解析) 试卷 0 次下载
- 中考数学复习重难题型真题再现(全国通用)专题11一次函数性质综合特训(原卷版+解析) 试卷 0 次下载
中考数学复习重难题型真题再现(全国通用)专题04尺规作图(角平分线、垂直平分线、作角等于已知角、作垂线)特训(原卷版+解析)
展开
这是一份中考数学复习重难题型真题再现(全国通用)专题04尺规作图(角平分线、垂直平分线、作角等于已知角、作垂线)特训(原卷版+解析),共60页。试卷主要包含了已知等内容,欢迎下载使用。
类型一角平分线
1.(2022·辽宁营口)如图,在△ABC中,AB=AC,∠A=36°,由图中的尺规作图得到的射线与AC交于点D,则以下推断错误的是( )
A.B.C.D.
2.(2021·湖北中考真题)如图,在中,,按以下步骤作图:①以为圆心,任意长为半径作弧,分别交、于、两点;②分别以、为圆心,以大于的长为半径作弧,两弧相交于点;③作射线,交边于点.若,,则线段的长为( )
A.3B.C.D.
3.(2022·浙江舟山·中考真题)用尺规作一个角的角平分线,下列作法中错误的是( )
A. B.C. D.
4.(2022·陕西·中考真题)如图,已知是的一个外角.请用尺规作图法,求作射线,使.(保留作图痕迹,不写作法)
5.(2021·内蒙古)如图,在中,,根据尺规作图的痕迹,判断以下结论错误的是( )
A.B.
C.D.
6..(2022·湖南永州)如图,是平行四边形的对角线,平分,交于点.
(1)请用尺规作的角平分线,交于点(要求保留作图痕迹,不写作法,在确认答案后,请用黑色笔将作图痕迹再填涂一次);
(2)根据图形猜想四边形为平行四边形,请将下面的证明过程补充完整.
证明:∵四边形是平行四边形,
∴
∵______(两直线平行,内错角相等)
又∵平分,平分,
∴,
∴
∴______(______)(填推理的依据)
又∵四边形是平行四边形
∴
∴四边形为平行四边形(______)(填推理的依据).
7.(2022·山东青岛)已知:,.
求作:点P,使点P在内部,且.
8.(2022·黑龙江绥化)已知:.
(1)尺规作图:用直尺和圆规作出内切圆的圆心O;(只保留作图痕迹,不写作法和证明)
(2)如果的周长为14,内切圆的半径为1.3,求的面积.
9.人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:
已知:
求作:的平分线
做法:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N,
(2)分别以点M,N为圆心,大于的长为半径画弧,两弧在的内部相交于点C
(3)画射线OC,射线OC即为所求.
请你根据提供的材料完成下面问题:
(1)这种作已知角平分线的方法的依据是__________________(填序号).
① ② ③ ④
(2)请你证明OC为的平分线.
10.如图,在△ABC中,已知∠ABC=90°.
(1)请在BC上找一点P,作⊙P与AC,AB都相切,与AC的切点为Q;(尺规作图,保留作图痕迹)
(2)连接BQ,若AB=3,(1)中所作圆的半径为eq \f(3,2),求sin∠CBQ.
11.如图,AB为⊙O的直径,点C在⊙O上.
(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);
(2)探究OE与AC的位置及数量关系,并证明你的结论.
12.如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)
13.如图,在中.
利用尺规作图,在BC边上求作一点P,使得点P到AB的距离的长等于PC的长;
利用尺规作图,作出中的线段PD.
要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑
14.(1)如图,已知线段和点O,利用直尺和圆规作,使点O是的内心(不写作法,保留作图痕迹);
(2)在所画的中,若,则的内切圆半径是______.
15.已知:..
求作:,使它经过点和点,并且圆心在的平分线上,
16.如图,在中,.
尺规作图:作的外接圆;作的角平分线交于点D,连接AD.(不写作法,保留作图痕迹)
17.如图,点O在的边上,以为半径作,的平分线交于点D,过点D作于点E.
尺规作图(不写作法,保留作图痕迹),补全图形;
18.如图,在中,是边上一点,且.
(1)尺规作图(保留作图痕迹,不写作法)
①作的角平分线交于点;
②作线段的垂直平分线交于点.
(2)连接,直接写出线段和的数量关系及位置关系.
类型二垂直平分线
19.(2022·山东威海)过直线l外一点P作直线l的垂线PQ.下列尺规作图错误的是( )
A.B.C.D.
20.(2021·吉林中考真题)在中,,.用无刻度的直尺和圆规在BC边上找一点D,使为等腰三角形.下列作法不正确的是( )
A.B.
C.D.
21.(2022·湖南湘潭·中考真题)如图,小明在学了尺规作图后,作了一个图形,其作图步骤是:①作线段,分别以点、为圆心,以长为半径画弧,两弧相交于点、;②连接、,作直线,且与相交于点.则下列说法不正确的是( )
A.是等边三角形 B. C. D.
22.(2022·贵州毕节)在中,用尺规作图,分别以点A和C为圆心,以大于的长为半径作弧,两弧相交于点M和N.作直线交于点D,交于点E,连接.则下列结论不一定正确的是( )
A.B.C.D.
23.(2021·山东中考真题)如图,已知.
(1)以点A为圆心,以适当长为半径画弧,交于点M,交于点N.
(2)分别以M,N为圆心,以大于的长为半径画弧,两弧在的内部相交于点P.
(3)作射线交于点D.
(4)分别以A,D为圆心,以大于的长为半径画弧,两弧相交于G,H两点.
(5)作直线,交,分别于点E,F.
依据以上作图,若,,,则的长是( )
A.B.1C.D.4
24.(2021·湖南)如图,在中,,分别以点A,B为圆心,以大于的长为半径画弧,两弧交于D,E,经过D,E作直线分别交于点M,N,连接,下列结论正确的是( )
A.B.C.D.平分
25.(2022·吉林长春)如图,在中,根据尺规作图痕迹,下列说法不一定正确的是( )
A.B.
C.D.
26.(2021·湖南)如图,在中,,分别以点A,B为圆心,大于的长为半径画弧,两弧相交于点M和点N,作直线分别交、于点D和点E,若,则的度数是( )
A.B.C.D.
27.(2022·四川广元·中考真题)如图,在△ABC中,BC=6,AC=8,∠C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,大于AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于点E、F,则AE的长度为( )
A.B.3C.2D.
28.(2022·江苏常州)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是( )
A.垂线段最短 B.两点确定一条直线
C.过一点有且只有一条直线与已知直线垂直 D.过直线外一点有且只有一条直线与已知直线平行
29.(2021·吉林中考真题)如图,已知线段,其垂直平分线的作法如下:①分别以点和点为圆心,长为半径画弧,两弧相交于,两点;②作直线.上述作法中满足的条作为___1.(填“”,“”或“”)
30.(2022·内蒙古通辽)如图,依据尺规作图的痕迹,求的度数_________°.
31.(2022·湖南衡阳·中考真题)如图,在中,分别以点和点为圆心,大于的长为半径作圆弧,两弧相交于点和点,作直线交于点,连接.若,,则的周长为_________.
32..如图,在中,BD是它的一条对角线,
(1)求证:;
(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);
(3)连接BE,若,求的度数.
33..如图,△ABC中,∠C=90°,AC=4,BC=8.
(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)
(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.
34.(2022·江苏无锡)如图,△ABC为锐角三角形.
(1)请在图1中用无刻度的直尺和圆规作图:在AC右上方确定点D,使∠DAC=∠ACB,且;(不写作法,保留作图痕迹)
(2)在(1)的条件下,若,,,则四边形ABCD的面积为 .(如需画草图,请使用试卷中的图2)
35.(2019·陕西)(5分)如图,在△ABC中,AB=AC,AD是BC边上的高.请用尺规作图法,求作△ABC的外接圆.(保留作图痕迹,不写作法)
36.如图,点是正方形,的中心.
用直尺和圆规在正方形内部作一点(异于点),使得(保留作图痕迹,不写作法)
37.如图,在△ABC中,点P是AC上一点,连接BP,求作一点M,使得点M到AB和AC两边的距离相等,并且到点B和点P的距离相等.(不写作法,保留作图痕迹)
38.(2022·内蒙古赤峰)如图,已知中,,,.
(1)作的垂直平分线,分别交、于点、;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)的条件下,连接,求的周长.
39.如图,中,.
(1)作点关于的对称点;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)所作的图中,连接,,连接,交于点.
①求证:四边形是菱形;
②取的中点,连接,若,,求点到的距离.
40.(2022·河南)如图,反比例函数的图像经过点和点,点在点的下方,平分,交轴于点.
(1)求反比例函数的表达式.
(2)请用无刻度的直尺和圆规作出线段的垂直平分线.(要求:不写作法,保留作图痕迹,使用2B铅笔作图)
(3)线段与(2)中所作的垂直平分线相交于点,连接.求证:.
类型三作角等于已知角
41.如图,在△ABC中,点D是AB边上的一点.
(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)
(2)在(1)的条件下,若=2,求的值.
类型四作垂线
42.(2021·贵州中考真题)如图,已知线段,利用尺规作的垂直平分线,步骤如下:①分别以点为圆心,以的长为半径作弧,两弧相交于点和.②作直线.直线就是线段的垂直平分线.则的长可能是( )
A.1B.2C.3D.4
43.(2022·湖南长沙)如图,在中,按以下步骤作图:
①分别过点A、B为圆心,大于的长为半径画弧,两弧交于P、Q两点;
②作直线PQ交AB于点D;
③以点D为圆心,AD长为半径画弧交PQ于点M、连接AM、BM.
若,则AM的长为( )
A.4B.2C.D.
44.(2022·广西贵港)尺规作图(保留作图痕迹,不要求写出作法):
如图,已知线段m,n.求作,使.
45.已知△ABC(如图),根据要求作图.
( 1 )用直尺和圆规作BC边上的中线;
( 2 )用直尺和圆规作∠ACB的平分线;
( 3 )作BC边上的高线
专题04尺规作图
(角平分线、垂直平分线、作角等于已知角、作垂线)
类型一角平分线
1.(2022·辽宁营口)如图,在△ABC中,AB=AC,∠A=36°,由图中的尺规作图得到的射线与AC交于点D,则以下推断错误的是( )
A.B.C.D.
【答案】D
【分析】根据作图过程可得BD平分∠ABC,然后根据等腰三角形的性质即可解决问题.
【详解】解:∵AB=AC,∠A=36°,
∴∠ABC=∠ACB=(180°-36°)=72°,
根据作图过程可知:BD平分∠ABC,
∴∠ABD=∠DBC=∠ABC=36°,
∴∠BDC=180°-36°-72°=72°,∠ADB=∠DBC+∠ACB=36°+72°=108°,故选项C成立;
∵∠BDC=∠ACB=72°,
∴BD=BC,故选项A成立;
∵∠ABD=∠A=36°,
∴AD=BD,故选项B成立;
没有条件能证明CD=AD,故选项D不成立;
故选:D.
【点睛】本题考查了作图-基本作图,等腰三角形的判定和性质,解决本题的关键是掌握基本作图方法.
2.(2021·湖北中考真题)如图,在中,,按以下步骤作图:①以为圆心,任意长为半径作弧,分别交、于、两点;②分别以、为圆心,以大于的长为半径作弧,两弧相交于点;③作射线,交边于点.若,,则线段的长为( )
A.3B.C.D.
【答案】A
【分析】
由尺规作图痕迹可知,BD是∠ABC的角平分线,过D点作DH⊥AB于H点,设DC=DH=x则AD=AC-DC=8-x,BC=BH=6,AH=AB-BH=4,在Rt△ADH中,由勾股定理得到 ,由此即可求出x的值.
【详解】
解:由尺规作图痕迹可知,BD是∠ABC的角平分线,
过D点作DH⊥AB于H点,
∵∠C=∠DHB=90°,
∴DC=DH,
,
设DC=DH=x,则AD=AC-DC=8-x,BC=BH=6,AH=AB-BH=4,
在Rt△ADH中,由勾股定理:,
代入数据:,解得,故,
故选:A.
【点睛】
本题考查了角平分线的尺规作图,在角的内部角平分线上的点到角两边的距离相等,勾股定理等相关知识点,熟练掌握角平分线的尺规作图是解决本题的关键.
3.(2022·浙江舟山·中考真题)用尺规作一个角的角平分线,下列作法中错误的是( )
A. B.C. D.
【答案】D
【分析】根据作图轨迹及角平分线的定义判断即可得出答案.
【详解】A、如图,
由作图可知:,
又∵,
∴,
∴,
∴平分.
故A选项是在作角平分线,不符合题意;
B、如图,
由作图可知:,
又∵,
∴,
∴,
∴,
∵,,
∴,
∴,
∵,
∴,
∴平分.
故B选项是在作角平分线,不符合题意;
C、如图,
由作图可知:,
∴,,
∴,
∴,
∴平分.
故C选项是在作角平分线,不符合题意;
D、如图,
由作图可知:,
又∵,
∴,
∴
故D选项不是在作角平分线,符合题意;
故选:D
【点睛】本题考查了角平分线的作图,全等三角形的性质与判定,掌握以上知识是解题的关键.
4.(2022·陕西·中考真题)如图,已知是的一个外角.请用尺规作图法,求作射线,使.(保留作图痕迹,不写作法)
【答案】见解析
【分析】作的角平分线即可.
【详解】解:如图,射线即为所求作.
【点睛】本题考查了角平分线、三角形外角的性质、平行线的判定,解题的关键是掌握平行线的判定定理.
5.(2021·内蒙古)如图,在中,,根据尺规作图的痕迹,判断以下结论错误的是( )
A.B.
C.D.
【答案】B
【分析】
先通过作图过程可得AD平分∠BAC,DE⊥AB,然后证明△ACD≌△AED说明C、D正确,再根据直角三角形的性质说明选项A正确,最后发现只有AE=EB时才符合题意.
【详解】
解:由题意可得:AD平分∠BAC,DE⊥AB,
在△ACD和△AED中
∠AED=∠C,∠EAD=∠CAD,AD=AD
∴△ACD≌△AED(AAS)
∴DE=DC,AE=AC,即C、D正确;
在Rt△BED中,∠BDE=90°-∠B
在Rt△BED中,∠BAC=90°-∠B
∴∠BDE=∠BAC,即选项A正确;
选项B,只有AE=EB时,才符合题意.
故选B.
【点睛】
本题主要考查了尺规作图、全等三角形的性质与判定、直角三角形的性质,正确理解尺规作图成为解答本题的关键.
6..(2022·湖南永州)如图,是平行四边形的对角线,平分,交于点.
(1)请用尺规作的角平分线,交于点(要求保留作图痕迹,不写作法,在确认答案后,请用黑色笔将作图痕迹再填涂一次);
(2)根据图形猜想四边形为平行四边形,请将下面的证明过程补充完整.
证明:∵四边形是平行四边形,
∴
∵______(两直线平行,内错角相等)
又∵平分,平分,
∴,
∴
∴______(______)(填推理的依据)
又∵四边形是平行四边形
∴
∴四边形为平行四边形(______)(填推理的依据).
【答案】(1)详见解析
(2)∠DBC;BF;内错角相等,两直线平行;两组对边分别相等的四边形是平行四边形
【分析】(1)根据作角平分线的步骤作平分即可;
(2)结合图形和已有步骤合理填写即可;
(1)
解:如图,根据角平分线的作图步骤,得到DE,即为所求;
(2)
证明:∵四边形是平行四边形,
∴
∵.(两直线平行,内错角相等).
又∵平分,平分,
∴,
∴.
∴(内错角相等,两直线平行)(填推理的依据)
又∵四边形是平行四边形.
∴,
∴四边形为平行四边形(两组对边分别平行的四边形是平行四边形)(填推理的依据).
【点睛】本题主要考查平行四边形的性质、角平分线的性质,掌握相关性质并灵活应用是解题的关键.
7.(2022·山东青岛)已知:,.
求作:点P,使点P在内部,且.
【答案】见解析
【分析】分别以点B、C为圆心,大于BC长的一半为半径画弧,交于两点,连接这两点,然后再以点B为圆心,适当长为半径画弧,交AB、BC于点M、N,以点M、N为圆心,大于MN长一半为半径画弧,交于一点Q,连接BQ,进而问题可求解.
【详解】解:如图,点P即为所求:
【点睛】本题主要考查角平分线与垂直平分线的尺规作图,熟练掌握角平分线与垂直平分线的尺规作图是解题的关键.
8.(2022·黑龙江绥化)已知:.
(1)尺规作图:用直尺和圆规作出内切圆的圆心O;(只保留作图痕迹,不写作法和证明)
(2)如果的周长为14,内切圆的半径为1.3,求的面积.
【答案】(1)作图见详解
(2)9.1
【分析】(1)根据角平分线的性质可知角平分线的交点为三角形内切圆的圆心,故只要作出两个角的角平分线即可;
(2)利用割补法,连接OA,OB,OC,作OD⊥AB,OE⊥BC,OF⊥AC,这样将△ABC分成三个小三角形,这三个小三角形分别以△ABC的三边为底,高为内切圆的半径,利用提取公因式可将周长代入,进而求出三角形的面积.
(1)
解:如下图所示,O为所求作点,
(2)
解:如图所示,连接OA,OB,OC,作OD⊥AB,OE⊥BC,OF⊥AC,
∵内切圆的半径为1.3,
∴OD=OF=OE=1.3,
∵三角形ABC的周长为14,
∴AB+BC+AC=14,
则
故三角形ABC的面积为9.1.
【点睛】本题考查三角形的内切圆,角平分线的性质,割补法求几何图形的面积,能够将角平分线的性质与三角形的内切圆相结合是解决本题的关键.
9.人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:
已知:
求作:的平分线
做法:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N,
(2)分别以点M,N为圆心,大于的长为半径画弧,两弧在的内部相交于点C
(3)画射线OC,射线OC即为所求.
请你根据提供的材料完成下面问题:
(1)这种作已知角平分线的方法的依据是__________________(填序号).
① ② ③ ④
(2)请你证明OC为的平分线.
【答案】(1)①;(2)证明见解析
【解析】
【分析】
(1)根据作图的过程知道:OM=ON,OC=OC,CM=CM,由“SSS”可以证得△EOC≌△DOC;
(2)根据作图的过程知道:OM=ON,OC=OC,CM=CM,由全等三角形的判定定理SSS可以证得△EOC≌△DOC,从而得到OC为的平分线.
【详解】
(1)根据作图的过程知道:OM=ON,OC=OC,CM=CM,所以由全等三角形的判定定理SSS可以证得△EOC≌△DOC,从而得到OC为的平分线;
故答案为:①;
(2)如图,
连接MC、NC.
根据作图的过程知,
在△MOC与△NOC中,
,
∴△MOC≌△NOC(SSS),
∠AOC=∠BOC,
∴OC为的平分线.
【点睛】
本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.
10.如图,在△ABC中,已知∠ABC=90°.
(1)请在BC上找一点P,作⊙P与AC,AB都相切,与AC的切点为Q;(尺规作图,保留作图痕迹)
(2)连接BQ,若AB=3,(1)中所作圆的半径为eq \f(3,2),求sin∠CBQ.
【分析】 (1)要求作⊙P与AB、AC相切,根据切线的性质,即点P到AB、AC的距离相等,且点P在边BC上,想到角平分线上的点到角两边的距离相等,即作∠BAC的平分线交BC于P点,以点P为圆心,PB为半径作圆即可;(2)由切线长定理得AB=AQ,又PB=PQ,则判定AP为BQ的垂直平分线,利用等角的余角相等得到∠CBQ=∠BAP,然后在Rt△ABP中利用正弦函数求出sin∠BAP,从而可得到sin∠CBQ的值.
解:(1)如图所示,⊙P即为所求:
(2)∵AB、AQ为⊙P的切线,∴AB=AQ,∵PB=PQ,∴AP为BQ的垂直平分线,∴∠BAP+∠ABQ=90°,∵∠CBQ+∠ABQ=90°,∴∠CBQ=∠BAP,在Rt△ABP中,AP=eq \r(AB2+PB2)=eq \r(32+(\f(3,2))2)=eq \f(3\r(5),2),∴sin∠BAP=eq \f(BP,AP)=eq \f(\f(3,2),\f(3\r(5),2))=eq \f(\r(5),5),∴sin∠CBQ=eq \f(\r(5),5)
11.如图,AB为⊙O的直径,点C在⊙O上.
(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);
(2)探究OE与AC的位置及数量关系,并证明你的结论.
【分析】(1)利用基本作图作AD平分∠BAC,然后连接OD得到点E;
(2)由AD平分∠BAC得到∠BAD=∠BAC,由圆周角定理得到∠BAD=∠BOD,则∠BOD=∠BAC,再证明OE为△ABC的中位线,从而得到OE∥AC,OE=AC.
【解答】解:(1)如图所示;
(2)OE∥AC,OE=AC.
理由如下:
∵AD平分∠BAC,
∴∠BAD=∠BAC,
∵∠BAD=∠BOD,
∴∠BOD=∠BAC,
∴OE∥AC,
∵OA=OB,
∴OE为△ABC的中位线,
∴OE∥AC,OE=AC.
12.如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)
【分析】:要满足条件:在BC边上求作一点P,使得点P到AC的距离等于BP的长,则DP为∠BDC的角平分线.
【答案】解:如图所示,点P即为所求.
13.如图,在中.
利用尺规作图,在BC边上求作一点P,使得点P到AB的距离的长等于PC的长;
利用尺规作图,作出中的线段PD.
要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑
【答案】作图见解析; (2)作图见解析.
【分析】由点P到AB的距离的长等于PC的长知点P在平分线上,再根据角平分线的尺规作图即可得(以点A为圆心,以任意长为半径画弧,与AC、AB分别交于一点,然后分别以这两点为圆心,以大于这两点距离的一半长为半径画弧,两弧交于一点,过点A及这个交点作射线交BC于点P,P即为要求的点);根据过直线外一点作已知直线的垂线的尺规作图即可得(以点P为圆心,以大于点P到AB的距离为半径画弧,与AB交于两点,分别以这两点为圆心,以大于这两点间距离一半长为半径画弧,两弧在AB的一侧交于一点,过这点以及点P作直线与AB交于点D,PD即为所求).
【详解】如图,点P即为所求;
如图,线段PD即为所求.
【点睛】本题考查了作图-复杂作图、角平分线的性质定理等知识,解题的关键是熟练掌握基本作图,灵活运用所学知识解决问题.
14.(1)如图,已知线段和点O,利用直尺和圆规作,使点O是的内心(不写作法,保留作图痕迹);
(2)在所画的中,若,则的内切圆半径是______.
【答案】(1)作法:如图所示,见解析;(2)2.
【分析】(1)内心是角平分线的交点,根据AO和BO分别是∠CAB和∠CBA的平分线,作图即可;
(2)连接OC,设内切圆的半径为r,利用三角形的面积公式,即可求出答案.
【详解】解:(1)作法:如图所示:
①作射线、; ②以点A为圆心,任意长为半径画弧分别交线段,射线于点D,E;
③以点E为圆心,长为半径画弧,交上一步所画的弧于点F,同理作出点M;
④作射线,相交于点C,即所求.
(2)如图,连接OC,
∵,由勾股定理,得:,∴;
∵,∴,∴,
∴,∴的内切圆半径是2;故答案为:2;
【点睛】本题考查了求三角形内切圆的半径,角平分线的性质,勾股定理,以及三角形的面积公式,解题的关键是作出图形,利用所学的知识正确求出三角形内切圆的半径.
15.已知:..
求作:,使它经过点和点,并且圆心在的平分线上,
【答案】见详解.
【分析】要作圆,即需要先确定其圆心,先作∠A的角平分线,再作线段BC的垂直平分线相交于点O,即O点为圆心.
【详解】解:根据题意可知,先作∠A的角平分线,再作线段BC的垂直平分线相交于O,
即以O点为圆心,OB为半径,作圆O,如下图所示:
【点睛】此题主要考查了学生对确定圆心的作法,要求学生熟练掌握应用.
16.如图,在中,.
尺规作图:作的外接圆;作的角平分线交于点D,连接AD.(不写作法,保留作图痕迹)
【答案】见解析;
【分析】根据外接圆,角平分线的作法作图即可;
【详解】作图如下:
【点睛】本题考查了三角形的外接圆,角平分线,以及利用圆周角与圆心角的关系是解题的关键.
17.如图,点O在的边上,以为半径作,的平分线交于点D,过点D作于点E.
尺规作图(不写作法,保留作图痕迹),补全图形;
【答案】见解析;
【分析】根据已知圆心和半径作圆、作已知角的平分线、过直线外一点作已知直线的垂线的尺规作图的步骤作图即可;
【详解】解:(1)如下图,补全图形:
【点睛】本题考查尺规作图、圆的切线的判定是解题的关键.
18.如图,在中,是边上一点,且.
(1)尺规作图(保留作图痕迹,不写作法)
①作的角平分线交于点;
②作线段的垂直平分线交于点.
(2)连接,直接写出线段和的数量关系及位置关系.
【答案】(1)①作图见解析,②作图见解析;(2)
【解析】
【分析】
(1)①根据角平分线的作图方法直接作图即可;②根据垂直平分线的作图方法直接作图即可;
(2)根据等腰三角形的性质与垂直平分线的定义证明是的中位线,根据中位线的性质可得答案.
【详解】
解:(1)如图,①即为所求作的的角平分线,
②过的垂线是所求作的线段的垂直平分线.
(2)如图,连接,
平分
由作图可知:
是的中位线,
【点睛】
本题考查的是角平分线与垂直平分线的尺规作图,同时考查了三角形的中位线的性质,掌握以上知识是解题的关键.
类型二垂直平分线
19.(2022·山东威海)过直线l外一点P作直线l的垂线PQ.下列尺规作图错误的是( )
A.B.C.D.
【答案】C
【分析】根据线段垂直平分线的逆定理及两点确定一条直线一一判断即可.
【详解】A、如图,连接AP、AQ、BP、BQ,
AP=BP,AQ=BQ,
点P在线段AB的垂直平分线上,点Q在线段AB的垂直平分线上,
直线PQ垂直平分线线段AB,即直线l垂直平分线线段PQ,本选项不符合题意;
B、如图,连接AP、AQ、BP、BQ,
AP= AQ,BP =BQ,点A在线段PQ的垂直平分线上,点B在线段PQ的垂直平分线上,
直线AB垂直平分线线段PQ,即直线l垂直平分线线段PQ,本选项不符合题意;
C、C项无法判定直线PQ垂直直线l,本选项符合题意;
D、如图,连接AP、AQ、BP、BQ,
AP= AQ,BP =BQ,
点A在线段PQ的垂直平分线上,点B在线段PQ的垂直平分线上,
直线AB垂直平分线线段PQ,即直线l垂直平分线线段PQ,
本选项不符合题意;故选:C.
【点睛】本题考查作图-复杂作图,线段垂直平分线的逆定理及两点确定一条直线等知识,读懂图像信息是解题的关键,属于中考常考题型.
20.(2021·吉林中考真题)在中,,.用无刻度的直尺和圆规在BC边上找一点D,使为等腰三角形.下列作法不正确的是( )
A.B.
C.D.
【答案】A
【分析】
利用直角三角形的性质、中垂线的性质、角平分线的尺规作图逐一判断即可得.
【详解】
解:A.此作图是作∠BAC平分线,在中,,,无法得出为等腰三角形,此作图不正确,符合题意;
B.此作图可直接得出CA=CD,即为等腰三角形,此作图正确,不符合题意;
C.此作图是作AC边的中垂线,可直接得出AD=CD,此作图正确,不符合题意;
D.此作图是作BC边的中垂线,可知AD是BC上的中线,为等腰三角形,此作图正确,不符合题意;
故选:A.
【点睛】
本题主要考查作图−基本作图,解题的关键是掌握直角三角形的性质、中垂线的性质、角平分线的尺规作图.
21.(2022·湖南湘潭·中考真题)如图,小明在学了尺规作图后,作了一个图形,其作图步骤是:①作线段,分别以点、为圆心,以长为半径画弧,两弧相交于点、;②连接、,作直线,且与相交于点.则下列说法不正确的是( )
A.是等边三角形 B. C. D.
【答案】D
【分析】根据等边三角形的判定和性质,线段垂直平分线的性质一一判断即可.
【详解】解:由作图可知:AB=BC=AC,
∴△ABC是等边三角形,故A选项正确
∵等边三角形三线合一,
由作图知,CD是线段AB的垂直平分线,
∴,故B选项正确,
∴,,故C选项正确,D选项错误.故选:D.
【点睛】此题考查了作图-基本作图,等边三角形的判定和性质,线段垂直平分线的性质,解题的关键是理解题意,灵活运用所学知识解决问题.
22.(2022·贵州毕节)在中,用尺规作图,分别以点A和C为圆心,以大于的长为半径作弧,两弧相交于点M和N.作直线交于点D,交于点E,连接.则下列结论不一定正确的是( )
A.B.C.D.
【答案】A
【分析】根据作图可知AM=CM,AN=CN,所以MN是AC的垂直平分线,根据垂直平分线的性质,线段垂直平分线上的点到线段两端的距离相等,且平分此点到线段两端构成的夹角,分别对各选项进行判断.
【详解】由题意得,MN垂直平分线段AC,
∴,,
所以B、C、D正确,
因为点B的位置不确定,
所以不能确定AB=AE,故选 A
【点睛】本题考查了线段垂直平分线,熟练掌握线段垂直平分线的作图方法和性质是解题的关键.
23.(2021·山东中考真题)如图,已知.
(1)以点A为圆心,以适当长为半径画弧,交于点M,交于点N.
(2)分别以M,N为圆心,以大于的长为半径画弧,两弧在的内部相交于点P.
(3)作射线交于点D.
(4)分别以A,D为圆心,以大于的长为半径画弧,两弧相交于G,H两点.
(5)作直线,交,分别于点E,F.
依据以上作图,若,,,则的长是( )
A.B.1C.D.4
【答案】C
【分析】
连接,则,根据相似三角形对应边成比例即可得出结果
【详解】
如图,连接
垂直平分
,
平分
同理可知
四边形是平行四边形
又
平行四边形是菱形
又
,
解得:
故选C
【点睛】
本题考查了由已知作图分析角平分线的性质,垂直平分线的性质,相似三角形,菱形的性质与判定,熟知上述各类图形的判定或性质是解题的基础,寻找未知量与已知量之间的等量关系是关键.
24.(2021·湖南)如图,在中,,分别以点A,B为圆心,以大于的长为半径画弧,两弧交于D,E,经过D,E作直线分别交于点M,N,连接,下列结论正确的是( )
A.B.C.D.平分
【答案】B
【分析】
根据线段垂直平分线的尺规作图、以及性质即可得.
【详解】
解:由题意得:是线段的垂直平分线,
则,
故选:B.
【点睛】
本题考查了线段垂直平分线的尺规作图、以及性质,熟练掌握线段垂直平分线的尺规作图是解题关键.
25.(2022·吉林长春)如图,在中,根据尺规作图痕迹,下列说法不一定正确的是( )
A.B.
C.D.
【答案】B
【分析】根据尺规作图痕迹,可得DF垂直平分AB,BE是的角平分线,根据垂直平分线的性质和角平分线的定义,直角三角形两锐角互余,等边对等角的性质进行判断即可.
【详解】根据尺规作图痕迹,可得DF垂直平分AB,BE是的角平分线,
,
,
,
综上,正确的是A、C、D选项,
故选:B.
【点睛】本题考查了垂直平分线和角平分线的作图,垂直平分线的性质,角平分线的定义,直角三角形两锐角互余,等边对等角的性质,熟练掌握知识点是解题的关键.
26.(2021·湖南)如图,在中,,分别以点A,B为圆心,大于的长为半径画弧,两弧相交于点M和点N,作直线分别交、于点D和点E,若,则的度数是( )
A.B.C.D.
【答案】A
【分析】
由尺规作图痕迹可知,MN是线段AB的垂直平分线,进而得到DB=DA,∠B=∠BAD,再由AB=AC得到∠B=∠C=50°,进而得到∠BAC=80°,∠CAD=∠BAC-∠BAD=30°即可求解.
【详解】
解:由题意可知:MN是线段AB的垂直平分线,
∴DB=DA,
∴∠B=∠BAD=50°,
又AB=AC,
∴∠B=∠C=50°,
∴∠BAC=80°,
∴∠CAD=∠BAC-∠BAD=30°,
故选:A.
【点睛】
本题考查等腰三角形的两底角相等,线段垂直平分线的尺规作图等,属于基础题,熟练掌握线段垂直平分线的性质是解决本题的关键.
27.(2022·四川广元·中考真题)如图,在△ABC中,BC=6,AC=8,∠C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,大于AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于点E、F,则AE的长度为( )
A.B.3C.2D.
【答案】A
【分析】由题意易得MN垂直平分AD,AB=10,则有AD=4,AF=2,然后可得,
进而问题可求解.
【详解】解:由题意得:MN垂直平分AD,,∴,
∵BC=6,AC=8,∠C=90°,∴,
∴AD=4,AF=2,,∴;故选A.
【点睛】本题主要考查勾股定理、垂直平分线的性质及三角函数,熟练掌握勾股定理、垂直平分线的性质及三角函数是解题的关键.
28.(2022·江苏常州)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是( )
A.垂线段最短 B.两点确定一条直线
C.过一点有且只有一条直线与已知直线垂直 D.过直线外一点有且只有一条直线与已知直线平行
【答案】A
【分析】根据垂线段最短解答即可.
【详解】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,
故选:A.
【点睛】本题考查垂线段最短,熟知垂线段最短是解答的关键.
29.(2021·吉林中考真题)如图,已知线段,其垂直平分线的作法如下:①分别以点和点为圆心,长为半径画弧,两弧相交于,两点;②作直线.上述作法中满足的条作为___1.(填“”,“”或“”)
【答案】>
【分析】
作图方法为:以,为圆心,大于长度画弧交于,两点,由此得出答案.
【详解】
解:∵,
∴半径长度,
即.
故答案为:.
【点睛】
本题考查线段的垂直平分线尺规作图法,解题关键是掌握线段垂直平分线的作图方法.
30.(2022·内蒙古通辽)如图,依据尺规作图的痕迹,求的度数_________°.
【答案】60
【分析】先根据矩形的性质得出,故可得出∠ABD的度数,由角平分线的定义求出∠EBF的度数,再由EF是线段BD的垂直平分线得出∠EFB、∠BEF的度数,进而可得出结论.
【详解】解:如图,
∵四边形ABCD为矩形,
∴,
∴,
由尺规作图可知,BE平分∠ABD,
∴,
由尺规作图可知EF垂直平分BD,
∴∠EFB=90°,
∴,
∴∠α=∠BEF=60°.
故答案为:60°.
【点睛】本题主要考查了尺规作图-基本作图、角平分线以及垂直平分线的知识,解题关键是熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
31.(2022·湖南衡阳·中考真题)如图,在中,分别以点和点为圆心,大于的长为半径作圆弧,两弧相交于点和点,作直线交于点,连接.若,,则的周长为_________.
【答案】23
【分析】由作图可得:是的垂直平分线,可得再利用三角形的周长公式进行计算即可.
【详解】解:由作图可得:是的垂直平分线,
,, 故答案为:23
【点睛】本题考查的是线段的垂直平分线的作图,线段的垂直平分线的性质,掌握“线段的垂直平分线的性质”是解本题的关键.
32..如图,在中,BD是它的一条对角线,
(1)求证:;
(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);
(3)连接BE,若,求的度数.
【答案】(1)见解析
(2)见解析
(3)50°
【分析】(1)由平行四边形的性质得出,可利用“SSS”证明三角形全等;
(2)根据垂直平分线的作法即可解答;
(3)根据垂直平分线的性质可得,由等腰三角形的性质可得,再根据三角形外角的性质求解即可.
(1)
四边形ABCD是平行四边形,
,
,
(2)
如图,EF即为所求;
(3)
BD的垂直平分线为EF,
,
,
,
,
.
【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,垂直平分线的作法和性质,等腰三角形的性质及三角形外角的性质,熟练掌握知识点是解题的关键.
33..如图,△ABC中,∠C=90°,AC=4,BC=8.
(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)
(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.
【分析】(1)分别以A,B为圆心,大于AB为半径画弧,两弧交于点M,N,作直线MN即可.
(2)设AD=BD=x,在Rt△ACD中,利用勾股定理构建方程即可解决问题.
【解答】解:(1)如图直线MN即为所求.
(2)∵MN垂直平分线段AB,
∴DA=DB,设DA=DB=x,
在Rt△ACD中,∵AD2=AC2+CD2,
∴x2=42+(8﹣x)2,
解得x=5,
∴BD=5.
34.(2022·江苏无锡)如图,△ABC为锐角三角形.
(1)请在图1中用无刻度的直尺和圆规作图:在AC右上方确定点D,使∠DAC=∠ACB,且;(不写作法,保留作图痕迹)
(2)在(1)的条件下,若,,,则四边形ABCD的面积为 .(如需画草图,请使用试卷中的图2)
【答案】(1)见解析
(2)
【分析】(1)先作∠DAC=∠ACB,再利用垂直平分线的性质作,即可找出点D;
(2)由题意可知四边形ABCD是梯形,利用直角三角形的性质求出AE、BE、CE、AD的长,求出梯形的面积即可.
(1)
解:如图,
∴点D为所求点.
(2)
解:过点A作AE垂直于BC,垂足为E,
∵,,
∴,
∵,
∴,,
∴,
∵∠DAC=∠ACB,
∴,四边形ABCD是梯形,
∴,
∴四边形AECD是矩形,
∴,
∴四边形ABCD的面积为,
故答案为:.
【点睛】本题考查作图,作相等的角,根据垂直平分线的性质做垂线,根据直角三角形的性质及勾股定理求线段的长,正确作出图形是解答本题的关键.
35.(2019·陕西)(5分)如图,在△ABC中,AB=AC,AD是BC边上的高.请用尺规作图法,求作△ABC的外接圆.(保留作图痕迹,不写作法)
【分析】作线段AB的垂直平分线,交AD于点O,以O为圆心,OB为半径作⊙O,⊙O即为所求.
【解答】解:如图所示:⊙O即为所求.
【点评】本题考查作图﹣复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
36.如图,点是正方形,的中心.
用直尺和圆规在正方形内部作一点(异于点),使得(保留作图痕迹,不写作法)
【答案】见解析;
【分析】作BC的垂直平分线即可求解;
【详解】如图所示,点即为所求.
37.如图,在△ABC中,点P是AC上一点,连接BP,求作一点M,使得点M到AB和AC两边的距离相等,并且到点B和点P的距离相等.(不写作法,保留作图痕迹)
【答案】见解析.
【分析】根据角平分线的作法、线段垂直平分线的作法作图即可.
【详解】解:如图,点M即为所求,
作法:如解图,以点为圆心,适当长为半径画弧,分别交、于、两点,再分别以、为圆心,以大于长为半径画弧,两弧交于点,连接;以、为圆心,以大于长为半径画弧,两弧分别交于、,连接,则的延长线与的延长线的交点即为所求的点.
【点睛】本题考查的是复杂作图、角平分线的性质、线段垂直平分线的性质,掌握基本尺规作图的一般步骤是解题的关键.
38.(2022·内蒙古赤峰)如图,已知中,,,.
(1)作的垂直平分线,分别交、于点、;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)的条件下,连接,求的周长.
【答案】(1)见解析
(2)
【分析】(1)利用基本作图,作BC的垂直平分线分别交、于点、;
(2)根据平行线分线段成比例计算即可.
(1)
如图所示,点D、H即为所求
(2)
在(1)的条件下,,
∵,
∴DH∥AC,
∴
∴,解得
∴
故答案为:.
【点睛】本题考查尺规作图中的作垂直平分线、平行线分段成比例、垂直平分线的性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
39.如图,中,.
(1)作点关于的对称点;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)所作的图中,连接,,连接,交于点.
①求证:四边形是菱形;
②取的中点,连接,若,,求点到的距离.
【答案】(1)见解析;(2)①见解析:②.
【解析】
【分析】
(1)过点做的垂线交于点,在的延长线上截取,即可求出所作的点关于的对称点;
(2)①利用,得出,利用,以及得出四边形是菱形;
②利用为中位线求出的长度,利用菱形对角线垂直平分得出的长度,进而利用求出的长度,得出对角线的长度,然后利用面积法求出点到的距离即可.
【详解】
(1)解:如图:点即为所求作的点;
(2)①证明:
∵,,
又∵,
∴;
∴,
又∵,
∴四边形是菱形;
②解:∵四边形是菱形,
∴,,
又∵,
∴,
∵为的中点,
∴,
∵,
∴为的中位线,
∵,
∴,
∴菱形的边长为13,
∵,
在中,由勾股定理得:,即:,
∴,
设点到的距离为,利用面积相等得:
,
解得:,
即到的距离为.
【点睛】
本题考查了对称点的作法、菱形的判定以及菱形的面积公式的灵活应用,牢记菱形的判定定理,以及对角线乘积的一半等于菱形的面积是解决本题的关键.
40.(2022·河南)如图,反比例函数的图像经过点和点,点在点的下方,平分,交轴于点.
(1)求反比例函数的表达式.
(2)请用无刻度的直尺和圆规作出线段的垂直平分线.(要求:不写作法,保留作图痕迹,使用2B铅笔作图)
(3)线段与(2)中所作的垂直平分线相交于点,连接.求证:.
【答案】(1)
(2)图见解析部分
(3)证明见解析
【分析】(1)把点的坐标代入反比例函数解析式,即可得出答案;
(2)利用基本作图作线段的垂直平分线即可;
(3)根据垂直平分线的性质和角平分线的定义可得到,然后利用平行线的判定即可得证.
(1)
解:∵反比例函数的图像经过点,
∴当时,,
∴,
∴反比例函数的表达式为:;
(2)
如图,直线即为所作;
(3)
证明:如图,
∵直线是线段的垂直平分线,
∴,
∴,
∵平分,
∴,
∴,
∴.
【点睛】本题考查了作图—基本作图,用待定系数法求反比例函数的解析式,垂直平分线的性质,等腰三角形的性质,平行线的判定,角平分线的定义等知识. 解题的关键是熟练掌握五种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
类型三作角等于已知角
41.如图,在△ABC中,点D是AB边上的一点.
(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)
(2)在(1)的条件下,若=2,求的值.
【解析】(1)如图,∠ADE为所作.
(2)∵∠ADE=∠B,
∴DE∥BC,
∴=2.
【总结】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
类型四作垂线
42.(2021·贵州中考真题)如图,已知线段,利用尺规作的垂直平分线,步骤如下:①分别以点为圆心,以的长为半径作弧,两弧相交于点和.②作直线.直线就是线段的垂直平分线.则的长可能是( )
A.1B.2C.3D.4
【答案】D
【分析】
利用基本作图得到b>AB,从而可对各选项进行判断.
【详解】
解:根据题意得:b>AB,
即b>3,
故选:D.
【点睛】
本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
43.(2022·湖南长沙)如图,在中,按以下步骤作图:
①分别过点A、B为圆心,大于的长为半径画弧,两弧交于P、Q两点;
②作直线PQ交AB于点D;
③以点D为圆心,AD长为半径画弧交PQ于点M、连接AM、BM.
若,则AM的长为( )
A.4B.2C.D.
【答案】B
【分析】根据作图可知垂直平分,,是等腰直角三角形,据此即可求解.
【详解】解:由作图可得垂直平分,
则是等腰直角三角形
∴由勾股定理得:故选:B.
【点睛】本题考查了作垂线,等腰直角三角形的性质,勾股定理,掌握基本作图理解题意是解题的关键.
44.(2022·广西贵港)尺规作图(保留作图痕迹,不要求写出作法):
如图,已知线段m,n.求作,使.
【答案】见解析
【分析】作直线l及l上一点A;过点A作l的垂线;在l上截取;作;即可得到.
【详解】解:如图所示:为所求.
注:(1)作直线l及l上一点A;
(2)过点A作l的垂线;
(3)在l上截取;
(4)作.
【点睛】本题考查作图——复杂作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.
45.已知△ABC(如图),根据要求作图.
( 1 )用直尺和圆规作BC边上的中线;
( 2 )用直尺和圆规作∠ACB的平分线;
( 3 )作BC边上的高线
【答案】解:如图,
(1)如图,作出BC的垂直平分线,交BC于点D,连接AD;
(2)如图,AD就是所求作的图形;
(3)AH就是所求作的图形.
【知识点】作图-垂线;作图-角的平分线;作图-线段垂直平分线
【解析】
【分析】
(1)作出作出BC的垂直平分线,交BC于点D,连接AD,可得到AD是BC边上的中线.
(2)利用作角平分线的方法,作出∠ACB的角平分线.
(3)利用作垂线的方法,作出BC边上的高.
相关试卷
这是一份中考数学复习重难题型真题再现(全国通用)专题14反比例函数性质综合特训(原卷版+解析),共57页。
这是一份中考数学复习重难题型真题再现(全国通用)专题11一次函数性质综合特训(原卷版+解析),共41页。
这是一份中考数学复习重难题型真题再现(全国通用)专题09函数的实际应用(行程问题、最优方案、阶梯费用)特训(原卷版+解析),共66页。试卷主要包含了之间的函数关系如图所示.等内容,欢迎下载使用。