- 中考数学复习重难题型真题再现(全国通用)专题18二次函数与几何图形综合题(与角度问题)特训(原卷版+解析) 试卷 0 次下载
- 中考数学复习重难题型真题再现(全国通用)专题19二次函数与几何图形综合题(与线段问题)特训(原卷版+解析) 试卷 0 次下载
- 中考数学复习重难题型真题再现(全国通用)专题21二次函数与几何图形综合题(与特殊三角形问题)特训(原卷版+解析) 试卷 0 次下载
- 中考数学复习重难题型真题再现(全国通用)专题23二次函数与几何图形综合题(与特殊四边形有关问题)特训(原卷版+解析) 试卷 0 次下载
- 中考数学复习重难题型真题再现(全国通用)专题24二次函数与几何图形综合题(与圆有关问题)特训(原卷版+解析) 试卷 0 次下载
中考数学复习重难题型真题再现(全国通用)专题20二次函数与几何图形综合题(与面积问题)特训(原卷版+解析)
展开(1)当该函数的图像经过原点,求此时函数图像的顶点的坐标;
(2)求证:二次函数的顶点在第三象限;
(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线上运动,平移后所得函数的图像与轴的负半轴的交点为,求面积的最大值.
2.(2021·湖北中考真题)抛物线交轴于,两点(在的左边).
(1)的顶点在轴的正半轴上,顶点在轴右侧的抛物线上.
①如图(1),若点的坐标是,点的横坐标是,直接写出点,的坐标;
②如图(2),若点在抛物线上,且的面积是12,求点的坐标;
(2)如图(3),是原点关于抛物线顶点的对称点,不平行轴的直线分别交线段,(不含端点)于,两点,若直线与抛物线只有一个公共点,求证的值是定值.
3.(2021·四川中考真题)如图,抛物线与x轴交于A、B两点,与y轴交于C点,,.
(1)求抛物线的解析式;
(2)在第二象限内的抛物线上确定一点P,使四边形PBAC的面积最大.求出点P的坐标
(3)在(2)的结论下,点M为x轴上一动点,抛物线上是否存在一点Q.使点P、B、M、Q为顶点的四边形是平行四边形,若存在.请直接写出Q点的坐标;若不存在,请说明理由.
4.(2021·湖北中考真题)如图,直线与,轴分别交于,,顶点为的抛物线过点.
(1)求出点,的坐标及的值;
(2)若函数在时有最大值为,求的值;
(3)连接,过点作的垂线交轴于点.设的面积为.
①直接写出关于的函数关系式及的取值范围;
②结合与的函数图象,直接写出时的取值范围.
5.(2021·福建中考真题)已知抛物线与x轴只有一个公共点.
(1)若抛物线过点,求的最小值;
(2)已知点中恰有两点在抛物线上.
①求抛物线的解析式;
②设直线l:与抛物线交于M,N两点,点A在直线上,且,过点A且与x轴垂直的直线分别交抛物线和于点B,C.求证:与的面积相等.
6.(2021·湖南中考真题)将抛物线向左平移1个单位,再向上平移4个单位后,得到抛物线.抛物线与轴交于点,,与轴交于点.已知,点是抛物线上的一个动点.
(1)求抛物线的表达式;
(2)如图1,点在线段上方的抛物线上运动(不与,重合),过点作,垂足为,交于点.作,垂足为,求的面积的最大值;
(3)如图2,点是抛物线的对称轴上的一个动点,在抛物线上,是否存在点,使得以点,,,为顶点的四边形是平行四边形?若存在,求出所有符合条件的点的坐标;若不存在,说明理由.
7.(2021·广西中考真题)在平面直角坐标系中,已知抛物线:交x轴于两点,与y轴交于点.
(1)求抛物线的函数解析式;
(2)如图1,点D为第四象限抛物线上一点,连接,过点B作,垂足为E,若,求点D的坐标;
(3)如图2,点M为第四象限抛物线上一动点,连接,交于点N,连接,记的面积为,的面程为,求的最大值.
8.(2021·山东中考真题)如图,在平面直角坐标系中,已知抛物线交轴于,两点,交轴于点.
(1)求该抛物线的表达式;
(2)点为第四象限内抛物线上一点,连接,过点作交轴于点,连接,求面积的最大值及此时点的坐标;
(3)在(2)的条件下,将抛物线向右平移经过点时,得到新抛物线,点在新抛物线的对称轴上,在坐标平面内是否存在一点,使得以、、、为顶点的四边形为矩形,若存在,请直接写出点的坐标;若不存在,请说明理由.
参考:若点、,则线段的中点的坐标为.
9.(2021·湖北中考真题)抛物线()与轴相交于点,且抛物线的对称轴为,为对称轴与轴的交点.
(1)求抛物线的解析式;
(2)在轴上方且平行于轴的直线与抛物线从左到右依次交于、两点,若是等腰直角三角形,求的面积;
(3)若是对称轴上一定点,是抛物线上的动点,求的最小值(用含的代数式表示).
10.(2021·黑龙江中考真题)综合与探究
如图,在平面直角坐标系中,抛物线与x轴交于点A、B,与y轴交于点C,连接BC,,对称轴为,点D为此抛物线的顶点.
(1)求抛物线的解析式;
(2)抛物线上C,D两点之间的距离是__________;
(3)点E是第一象限内抛物线上的动点,连接BE和CE.求面积的最大值;
(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.
11.(2020•黑龙江)如图,已知二次函数y=﹣x2+(a+1)x﹣a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知△BAC的面积是6.
(1)求a的值;
(2)在抛物线上是否存在一点P,使S△ABP=S△ABC.若存在请求出P坐标,若不存在请说明理由.
12.(2020•武威)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.
(1)求此抛物线的表达式;
(2)若PC∥AB,求点P的坐标;
(3)连接AC,求△PAC面积的最大值及此时点P的坐标.
13.(2020•重庆)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(−2,0),直线BC的解析式为y=−23x+2.
(1)求抛物线的解析式;
(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;
(3)将抛物线y=ax2+bx+2(a≠0)向左平移2个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.
14.(2020•重庆)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A(﹣3,﹣4),B(0,﹣1).
(1)求该抛物线的函数表达式;
(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求△PAB面积的最大值;
(3)将该抛物线向右平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.
15.(2020•乐山)已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连结BC,且tan∠CBD=43,如图所示.
(1)求抛物线的解析式;
(2)设P是抛物线的对称轴上的一个动点.
①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连结FB、FC,求△BCF的面积的最大值;
②连结PB,求35PC+PB的最小值.
16.(2020•达州)如图,在平面直角坐标系xOy中,已知直线y=12x﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1,0).
(1)求抛物线的解析式;
(2)在抛物线上是否存在一点P,使S△PAB=S△OAB?若存在,请求出点P的坐标,若不存在,请说明理由;
(3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MN+12ON的最小值.
17.(2019·海南)如图,已知抛物线y=ax2+bx+5经过A(–5,0),B(–4,–3)两点,与x轴的另一个交点为C,顶点为D,连结CD.
(1)求该抛物线的表达式;
(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.
①当点P在直线BC的下方运动时,求△PBC的面积的最大值;
②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.
18.(2019•广西南宁)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,–1).
(1)直接写出A,B的坐标和抛物线C2的解析式;
(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;
(3)如图2,点F(–6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.
专题20二次函数与几何图形综合题(与面积问题)
1.(2022·江苏连云港)已知二次函数,其中.
(1)当该函数的图像经过原点,求此时函数图像的顶点的坐标;
(2)求证:二次函数的顶点在第三象限;
(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线上运动,平移后所得函数的图像与轴的负半轴的交点为,求面积的最大值.
【答案】(1)
(2)见解析
(3)最大值为
【分析】(1)先利用待定系数法求出二次函数解析式,再将二次函数解析式化为顶点式即可得到答案;
(2)先根据顶点坐标公式求出顶点坐标为,然后分别证明顶点坐标的横纵坐标都小于0即可;
(3)设平移后图像对应的二次函数表达式为,则其顶点坐标为,然后求出点B的坐标,根据平移后的二次函数顶点在直线上推出,过点作,垂足为,可以推出,由此即可求解.
(1)
解:将代入,
解得.
由,则符合题意,
∴,
∴.
(2)
解:由抛物线顶点坐标公式得顶点坐标为.
∵,
∴,
∴,
∴.
∵,
∴二次函数的顶点在第三象限.
(3)
解:设平移后图像对应的二次函数表达式为,则其顶点坐标为
当时,,
∴.
将代入,
解得.
∵在轴的负半轴上,
∴.
∴.
过点作,垂足为,
∵,
∴.
在中,
,
∴当时,此时,面积有最大值,最大值为.
【点睛】本题主要考查了待定系数法求二次函数解析式,二次函数的性质,二次函数的平移,二次函数的最值问题,正确理解题意,熟练掌握二次函数的相关知识是解题的关键.
2.(2021·湖北中考真题)抛物线交轴于,两点(在的左边).
(1)的顶点在轴的正半轴上,顶点在轴右侧的抛物线上.
①如图(1),若点的坐标是,点的横坐标是,直接写出点,的坐标;
②如图(2),若点在抛物线上,且的面积是12,求点的坐标;
(2)如图(3),是原点关于抛物线顶点的对称点,不平行轴的直线分别交线段,(不含端点)于,两点,若直线与抛物线只有一个公共点,求证的值是定值.
【答案】(1)①,;②点的坐标是.(2)见解析
【分析】
(1)①根据函数图象与x轴的交点,令y=0,求出,点E在抛物线上,求出纵坐标为,再根据平行四边形的性质,求出;
②连,过点作轴垂线,垂足为,过点作,垂足为,设点坐标为,点坐标为,根据平行四边形的性质,与点在抛物线上,得到,再由则,列出方程求解;
(2)方法一:先求出G、H两点的横坐标,再利用求解即可;方法二:先用待定系数法求出直线与直线l的表达式,根据直线l与抛物线有唯一的交点,求出点坐标为,点坐标为,再求出结果.
【详解】
(1)解:①∵抛物线交轴于,两点(在的左边),
∴令=0,解得:,,
∴,
∵点E在抛物线上,点的横坐标是,
∴,
∵四边形ACDE是平行四边形,
∴
∴;
②设点坐标为,点坐标为.
∵四边形是平行四边形,
∴将沿平移可与重合,点坐标为.
∵点在抛物线上,∴.
解得,,所以.
连,过点作轴垂线,垂足为,过点作,垂足为.
则,
∵,,
∴.
∴,解得,(不合题意,舍去).
∴点的坐标是.
(2)方法一:证明:依题意,得,,∴
设直线解析式为,则,解得.
∴直线的解析式为.
同理,直线的解析式为.
设直线的解析式为.
联立,消去得.
∵直线与抛物线只有一个公共点,
∴,.
联立,且,解得,,
同理,得.
∵,两点关于轴对称,∴.
∴.
∴的值为.
方法二:证明:同方法一得直线的解析式为.
设直线的解析式为,与抛物线唯一公共点为.
联立,消去得,∴.
解得.∴直线的解析式为.
联立,且,解得.
∴点坐标为.同理,点坐标为.
∵,∴.
∴的值为.
【点睛】
本题是二次函数综合题,主要考查二次函数、一次函数、三角形面积、方程组等知识点,解题的关键是学会利用参数,学会用方程组求两个函数图象的交点坐标,学会把问题转化为方程解决,属于压轴题.
3.(2021·四川中考真题)如图,抛物线与x轴交于A、B两点,与y轴交于C点,,.
(1)求抛物线的解析式;
(2)在第二象限内的抛物线上确定一点P,使四边形PBAC的面积最大.求出点P的坐标
(3)在(2)的结论下,点M为x轴上一动点,抛物线上是否存在一点Q.使点P、B、M、Q为顶点的四边形是平行四边形,若存在.请直接写出Q点的坐标;若不存在,请说明理由.
【答案】(1);(2)(,);(3)(,)或(,)或(,)
【分析】
(1)根据OB=OC=3OA,AC=,利用勾股定理求出OA,可得OB和OC,得到A,B,C的坐标,利用待定系数法求出抛物线的解析式;
(2)判断出四边形BACP的面积最大时,△BPC的最大面积,过点P作y轴的平行线交BC于点H,求出直线BC的表达式,设点P(x,-x2-2x+3),利用三角形面积公式S△BPC=,即可求出S△BPC面积最小时点P的坐标;
(3)分类讨论,一是当BP为平行四边形对角线时,二是当BP为平行四边形一边时,利用平移规律即可求出点Q的坐标.
【详解】
解:(1)∵OB=OC=3OA,AC=,
∴,即,
解得:OA=1,OC=OB=3,
∴A(1,0),B(-3,0),C(0,3),代入中,
则,解得:,
∴抛物线的解析式为;
(2)如图,四边形PBAC的面积=△BCA的面积+△PBC的面积,
而△ABC的面积是定值,故四边形PBAC的面积最大,只需要△BPC的最大面积即可,
过点P作y轴的平行线交BC于点H,
∵B(-3,0),C(0,3),设直线BC的表达式为y=mx+n,
则,解得:,
∴直线BC的表达式为y=x+3,
设点P(x,-x2-2x+3),则点H(x,x+3),
S△BPC===,
∵,故S有最大值,即四边形PBAC的面积有最大值,
此时x=,代入得,
∴P(,);
(3)若BP为平行四边形的对角线,
则PQ∥BM,PQ=BM,
则P、Q关于直线x=-1对称,
∴Q(,);
若BP为平行四边形的边,
如图,QP∥BM,QP=BM,
同上可得:Q(,);
如图,BQ∥PM,BQ=PM,
∵点Q的纵坐标为,代入中,
解得:或(舍),
∴点Q的坐标为(,);
如图,BP∥QM,BP=QM,
∵点Q的纵坐标为,代入中,
解得:(舍)或,
∴点Q的坐标为(,);
综上:点Q的坐标为(,)或(,)或(,).
【点睛】
本题是二次函数综合题,考查了二次函数的有关性质、一次函数的性质、平行四边形的性质,熟练掌握二次函数的性质是解题的关键.
4.(2021·湖北中考真题)如图,直线与,轴分别交于,,顶点为的抛物线过点.
(1)求出点,的坐标及的值;
(2)若函数在时有最大值为,求的值;
(3)连接,过点作的垂线交轴于点.设的面积为.
①直接写出关于的函数关系式及的取值范围;
②结合与的函数图象,直接写出时的取值范围.
【答案】(1),,;(2);(3)①;②且a≠0或.
【分析】
(1)令x=0,可得直线与y轴的交点A的坐标;令y=0,可得直线与x轴的交点B的坐标,把点A的坐标代入抛物线的解析式中,即可求得c的值;
(2)把配方后,分a>0和a<0两种情况讨论,当时,函数的最大值,根据题意可求得此时的a值;
(3)①设直线AP交x轴于点N,易得Rt△AON∽Rt△MOA,由题意可求得ON的长,从而由相似的性质可求得OM,分四种情况:当a<0时,当02时,分别就这些情况计算△BMP的面积即可;
②画出函数S的图象,求得当时a的值,结合函数图象即可求得时a的取值范围.
【详解】
(1)当时,.得
当时,,解得.得
把代入,得
(2)∵
∴
当,时,随的增大而增大
∴当时,的值最大
由题意得
解得
当,时,随的增大而减小
∴当时,的值最大
由题意得
解得(不合题意,舍去)
∴
(3)①∵,
∴直线AP的解析式为
设直线AP交x轴于点N,令y=0,得
∴ ,
过P点作PC⊥x轴于点C,则
当a<0时,如下图所示
∵AM⊥AP,OA⊥MN
∴∠NAO+∠MAO=∠NAO+∠ANO=90゜
∴Rt△AON∽Rt△MOA
∴
∵OA=1
∴
∵OB=2
∴BM=OB+OM=2-a
∵PC=1-a
∴
当0∴BM=OB-OM=2-a
∴
当1∴BM=OB-OM=2-a
∴
当a>2时,如下图所示,同理得:,PC=a-1
∴BM=OM-OB=a-2
∴
当a=1或2时,此时△MBP不存在
综上所述,
②画出的函数S的图象如下
当时,解得 或
由图象知,当且a≠0或时,S>1
∴且a≠0或.
【点睛】
本题是二次函数的综合,考查了二次函数的图象与性质,求图形面积等知识,涉及分类讨论思想,且分类的情形比较多,数形结合思想,是一个比较难的题.
5.(2021·福建中考真题)已知抛物线与x轴只有一个公共点.
(1)若抛物线过点,求的最小值;
(2)已知点中恰有两点在抛物线上.
①求抛物线的解析式;
②设直线l:与抛物线交于M,N两点,点A在直线上,且,过点A且与x轴垂直的直线分别交抛物线和于点B,C.求证:与的面积相等.
【答案】(1)-1;(2)①;②见解析
【分析】
(1)先求得c=1,根据抛物线与x轴只有一个公共点,转化为判别式△=0,从而构造二次函数求解即可;
(2)①根据抛物线与x轴只有一个公共点,得抛物线上的点只能落在x轴的同侧,据此判断即可;②证明AB=BC即可
【详解】
解:因为抛物线与x轴只有一个公共点,
以方程有两个相等的实数根,
所以,即.
(1)因为抛物线过点,所以,
所以,即.
所以,
当时,取到最小值.
(2)①因为抛物线与x轴只有一个公共点,
所以抛物线上的点只能落在x轴的同侧.
又点中恰有两点在抛物线的图象上,
所以只能是在抛物线的图象上,
由对称性可得抛物线的对称轴为,所以,
即,因为,所以.
又点在抛物线的图象上,所以,
故抛物线的解析式为.
②由题意设,则.
记直线为m,分别过M,N作,垂足分别为E,F,
即,
因为,所以.
又,所以,所以.
所以,所以,即.
所以,
即.①
把代入,得,
解得,
所以.②
将②代入①,得,
即,解得,即.
所以过点A且与x轴垂直的直线为,
将代入,得,即,
将代入,得,
即,
所以,因此,
所以与的面积相等.
【点睛】
本小题考查一次函数和二次函数的图象与性质、相似三角形的判定与性质、三角形面积等基础知识,突出运算能力、推理能力、空间观念与几何直观、创新意识,灵活运用函数与方程思想、数形结合思想及化归与转化思想求解是解题的关键.
6.(2021·湖南中考真题)将抛物线向左平移1个单位,再向上平移4个单位后,得到抛物线.抛物线与轴交于点,,与轴交于点.已知,点是抛物线上的一个动点.
(1)求抛物线的表达式;
(2)如图1,点在线段上方的抛物线上运动(不与,重合),过点作,垂足为,交于点.作,垂足为,求的面积的最大值;
(3)如图2,点是抛物线的对称轴上的一个动点,在抛物线上,是否存在点,使得以点,,,为顶点的四边形是平行四边形?若存在,求出所有符合条件的点的坐标;若不存在,说明理由.
【答案】(1);(2)的面积最大值为;(3)点的坐标为或或.
【分析】
(1)由题意易得平移后的抛物线的表达式为,然后把点A的坐标代入求解即可;
(2)由(1)及题意易得,则有△AOC是等腰直角三角形,∠CAO=∠ACO=45°,进而可得直线AC的解析式为,设点,则,然后可得△AED和△PEF都为等腰直角三角形,过点F作FT⊥PD于点,则有,由三角形面积公式可得,要使面积最大则PE的值为最大即可,最后问题可求解;
(3)由题意可知当以点A、P、C、Q为顶点的四边形是平行四边形时,则可分①当以AC为平行四边形的边时,②当以AC为平行四边形的对角线时,然后利用等腰直角三角形、平行四边形的性质及中点坐标公式分类进行求解即可.
【详解】
解:(1)由题意得:平移后的抛物线的表达式为,则把点代入得:,
解得:,
∴抛物线的表达式为,即为;
(2)由(1)可得抛物线的表达式为,则有,
∴,
∴△AOC是等腰直角三角形,
∴∠CAO=∠ACO=45°,
∵,
∴∠AED=∠CAO=45°,
∴∠AED=∠PEF=45°,
∵,
∴△PEF是等腰直角三角形,
过点F作FT⊥PD于点,如图所示:
∴,
∴,
∴要使面积最大则PE的值为最大即可,
设直线AC的解析式为,代入点A、C的坐标得:,
解得:,
∴直线AC的解析式为,
设点,则,
∴,
∵-1<0,开口向下,
∴当时,PE有最大值,即为,
∴△PEF面积的最大值为;
(3)存在以点A、P、C、Q为顶点的四边形是平行四边形,理由如下:
由(2)可得,,∠CAO=∠ACO=45°,抛物线的对称轴为直线,
∴,∠CAO=∠ADQ=45°,
①当以AC为平行四边形的边时,如图所示:
过点P作PG⊥l于点G,
∵四边形APQC是平行四边形,
∴,AC∥PQ,
∴∠ADQ=∠PQG=45°,
∴△PQG是等腰直角三角形,
∴,
∴点P的横坐标为-4,
∴;
②当以AC为平行四边形的边时,如图所示:
同理①可得点P的横坐标为2,
∴;
③当以AC为平行四边形的对角线时,如图所示:
∵四边形AQCP是平行四边形,
∴,
设点,
∴由中点坐标公式可得:,
∴,
∴;
综上所述:当以点A、P、C、Q为顶点的四边形是平行四边形,点的坐标为或或.
【点睛】
本题主要考查平行四边形的性质、二次函数的综合及等腰直角三角形的性质与判定,熟练掌握平行四边形的性质、二次函数的综合及等腰直角三角形的性质与判定是解题的关键.
7.(2021·广西中考真题)在平面直角坐标系中,已知抛物线:交x轴于两点,与y轴交于点.
(1)求抛物线的函数解析式;
(2)如图1,点D为第四象限抛物线上一点,连接,过点B作,垂足为E,若,求点D的坐标;
(3)如图2,点M为第四象限抛物线上一动点,连接,交于点N,连接,记的面积为,的面程为,求的最大值.
【答案】(1);(2);(3)
【分析】
(1)利用待定系数法求解抛物线的函数解析式即可;
(2)先根据和勾股定理求得,,过点E做平行于交y轴于T,易证,利用相似三角形的性质求得,,进而求得点E坐标,求得直线OE的解析式,和抛物线联立方程组,解之即可求得点D坐标;
(3)延长于至点F,使轴,过A点作于点H,作轴交于点T,过M点作于点D,证明,利用相似三角形的性质和三角形的面积公式可得,利用待定系数法求出直线BC的解析式,进而可求得AF,设,则,根据二次函数求最值的方法求的MT的最大值,进而可求得的最大值.
【详解】
解:(1)依题意,设,
代入得:,解得:
∴;
(2)由, 设=x,则,
∵BE⊥OD,
∴在Rt△OEB中,OB=3,由勾股定理得:,
即,解得:(舍),
∴,,
过点E做平行于交y轴于T,
∴,
∴,
∴,
即,解得:,
∴,
∴ ,
∴直线的解析式为,
∵的延长线交抛物线于点D,
∴,解得:(舍),
当时,,
∴ ;
(3)如图所示,延长于至点F,使轴,过A点作于点H
作轴交于点T,过M点作于点D,
∵,
∴,
∵,
∴,
∴,
∴,
∵,,
∴ ,
设直线的解析式为,将B,C两点代入得
解得:,
∴直线的解析式为,
当时,,
∴,
∴,
设,
∴,
∵,
∴ ,
∴.
【点睛】
本题是二次函数的综合题,主要考查了待定系数法求函数的解析式、二次函数的图象与性质、相似三角形的判定与性质、坐标与图形、解一元二次方程、三角形的面积、勾股定理、求函数的最值等知识,解答的关键是结合图象,添加合适的辅助线,运用相似三角形的性质和数形结合法进行推理、探究和计算.
8.(2021·山东中考真题)如图,在平面直角坐标系中,已知抛物线交轴于,两点,交轴于点.
(1)求该抛物线的表达式;
(2)点为第四象限内抛物线上一点,连接,过点作交轴于点,连接,求面积的最大值及此时点的坐标;
(3)在(2)的条件下,将抛物线向右平移经过点时,得到新抛物线,点在新抛物线的对称轴上,在坐标平面内是否存在一点,使得以、、、为顶点的四边形为矩形,若存在,请直接写出点的坐标;若不存在,请说明理由.
参考:若点、,则线段的中点的坐标为.
【答案】(1)该抛物线的表达式为:;(2)面积最大值为8,此时P点的坐标为:P(2,-6);(3)或或或
【分析】
(1)将两个点分别代入抛物线可得关于a,b的二元一次方程组,可解得a,b;
(2)设出P、Q两点坐标,应用三角形相似,及三角形面积公式,代入化简可得一个二次函数,求其最大值即可;
(3)抛物线的平移可确定抛物线解析式及对称轴,设出点E、F,应用中点坐标公式及矩形特点分成的三角形为直角三角形,可得出答案.
【详解】
解:(1)将A(-1,0),B(4,0)代入抛物线可得:
,
解得:,
∴该抛物线的表达式为:;
(2)过点P作PN⊥x轴于点N,如图所示:
设且,,
∴,,,
∵,
∴,
∴,即,
∴,
∴,
∴,
∵点在抛物线上,
∴,
∴,,
根据抛物线的基本性质:对称轴为在内,
∴在取得最大值,代入得:,
当时,,
∴面积的最大值为8,此时点P的坐标为:.
(3)在(2)的条件下,原抛物线解析式为,将抛物线向右平移经过点,可知抛物线向右平移了个单位长度,
∴可得:,
化简得平移后的抛物线:,
对称轴为:,
由(2)得:A(-1,0),,点E在对称轴上,
∴设E(3,e),点F(m,n),矩形AEPF,
当以AP为矩形的对角线时,则AP的中点坐标为:,EF的中点坐标为:,
根据矩形的性质可得,两个中点坐标相同,可得:
解得:
∵矩形AEPF,
∴为直角三角形,
∴,③
,
,
,
代入③化简可得:,④
∴将②代入④可得:,
化简得:,
根据判别式得:,
∴,
∴或;
当以AP为矩形的边时,如图所示:
过点P分别作PG⊥x轴于点G,PH∥x轴,过点F作PH的垂线,垂足为H,设抛物线的对称轴与x轴的交点为M,如图,
∴,,AM=4,
∴,
∵四边形是矩形,
∴,AE=PF,
∴,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
∴FH=2,
∵点,
∴,
当以AP为矩形的边时,如图所示:
同理可得;
综上所述:以、、、为顶点的四边形为矩形,或或或
【点睛】
题目考查确定二次函数解析式及其基本性质、矩形的性质、勾股定理等,难点主要是依据图像确定各点、线段间的关系,得出答案.
9.(2021·湖北中考真题)抛物线()与轴相交于点,且抛物线的对称轴为,为对称轴与轴的交点.
(1)求抛物线的解析式;
(2)在轴上方且平行于轴的直线与抛物线从左到右依次交于、两点,若是等腰直角三角形,求的面积;
(3)若是对称轴上一定点,是抛物线上的动点,求的最小值(用含的代数式表示).
【答案】(1);(2)4;(3)
【分析】
(1)与轴相交于点,得到,再根据抛物线对称轴,求得,代入即可.
(2)在轴上方且平行于轴的直线与抛物线从左到右依次交于、两点,可知、两点关于对称轴对称,是等腰直角三角形得到,设,根据等腰直角三角形的性质求得E点坐标,从而求得的面积.
(3),根据距离公式求得,注意到的范围,利用二次函数的性质,对进行分类讨论,从而求得的最小值.
【详解】
解:(1)由抛物线()与轴相交于点得到
抛物线的对称轴为,即,解得
∴抛物线的方程为
(2)过点E作交AB于点M,过点F作,交AB于点N,如下图:
∵是等腰直角三角形
∴,
又∵轴
∴
∴为等腰直角三角形
∴
设,则,
∴
又∵
∴
解得或
当时,,符合题意,
当时,,不符合题意
综上所述:.
(3)设,在抛物线上,则
将代入上式,得
当时,,∴时,最小,即最小
=
当时,,∴时,最小,即最小
,
综上所述
【点睛】
此题考查了二次函数的对称轴、二次函数与三角形面积、等腰直角三角形的性质以及距离公式等知识,熟练掌握距离公式和对代数式的计算是解决本题的关键.
10.(2021·黑龙江中考真题)综合与探究
如图,在平面直角坐标系中,抛物线与x轴交于点A、B,与y轴交于点C,连接BC,,对称轴为,点D为此抛物线的顶点.
(1)求抛物线的解析式;
(2)抛物线上C,D两点之间的距离是__________;
(3)点E是第一象限内抛物线上的动点,连接BE和CE.求面积的最大值;
(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.
【答案】(1);(2);(3);(4)或或或.
【分析】
(1)先根据对称轴可得的值,再根据可得点的坐标,代入抛物线的解析式即可得;
(2)利用抛物线的解析式分别求出点的坐标,再利用两点之间的距离公式即可得;
(3)过点作轴的垂线,交于点,先利用待定系数法求出直线的解析式,再设点的坐标为,从而可得和的坐标,然后根据可得关于的函数关系式,利用二次函数的性质求解即可得;
(4)设点的坐标为,分①当为矩形的边时,②当为矩形的边时,③当为矩形的对角线时三种情况,再分别利用待定系数法求直线的解析式、矩形的性质、点坐标的平移变换规律求解即可得.
【详解】
解:(1)抛物线的对称轴为,
,
,
,且点在轴负半轴上,
,
将点代入得:,解得,
则抛物线的解析式为;
(2)化成顶点式为,
则顶点的坐标为,
当时,,即,
则抛物线上两点之间的距离是,
故答案为:;
(3)如图,过点作轴的垂线,交于点,
,抛物线的对称轴为,
,
设直线的解析式为,
将点代入得:,解得,
则直线的解析式为,
设点的坐标为,则,,
,
,
,
由二次函数的性质得:在内,当时,取最大值,最大值为,
即面积的最大值为;
(4)设点的坐标为,
由题意,分以下三种情况:
①当为矩形的边时,则,
设直线的解析式为,
将点代入得:,
则直线的解析式为,
将点代入得:,即,
将点先向右平移2个单位长度,再向上平移4个单位长度可得到点,
四边形是矩形,
点平移至点的方式与点平移至点的方式相同,
,
,即;
②当为矩形的边时,则,
同(4)①的方法可得:点的坐标为;
③当为矩形的对角线时,则,
,
即,
解得或,
或,
当点的坐标为时,
则将点先向左平移2个单位长度,再向下平移个单位长度可得到点,
四边形是矩形,
点平移至点的方式与点平移至点的方式相同,
,即;
同理可得:当点的坐标为时,点的坐标为,
综上,点的坐标为或或或.
【点睛】
本题考查了二次函数的几何应用、待定系数法求函数解析式、矩形的性质等知识点,较难的是题(4),正确分三种情况讨论是解题关键.
11.(2020•黑龙江)如图,已知二次函数y=﹣x2+(a+1)x﹣a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知△BAC的面积是6.
(1)求a的值;
(2)在抛物线上是否存在一点P,使S△ABP=S△ABC.若存在请求出P坐标,若不存在请说明理由.
【分析】(1)由y=﹣x2+(a+1)x﹣a,令y=0,即﹣x2+(a+1)x﹣a=0,可求出A、B坐标结合三角形的面积,解出a=﹣3;
(2)根据题意P的纵坐标为±3,分别代入解析式即可求得横坐标,从而求得P的坐标.
【解析】(1)∵y=﹣x2+(a+1)x﹣a,
令x=0,则y=﹣a,
∴C(0,﹣a),
令y=0,即﹣x2+(a+1)x﹣a=0
解得x1=a,x2=1
由图象知:a<0
∴A(a,0),B(1,0)
∵S△ABC=6
∴12(1﹣a)(﹣a)=6
解得:a=﹣3,(a=4舍去);
(2)∵a=﹣3,
∴C(0,3),
∵S△ABP=S△ABC.
∴P点的纵坐标为±3,
把y=3代入y=﹣x2﹣2x+3得﹣x2﹣2x+3=3,解得x=0或x=﹣2,
把y=﹣3代入y=﹣x2﹣2x+3得﹣x2﹣2x+3=﹣3,解得x=﹣1+7或x=﹣1−7,
∴P点的坐标为(﹣2,3)或(﹣1+7,﹣3)或(﹣1−7,﹣3).
12.(2020•武威)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.
(1)求此抛物线的表达式;
(2)若PC∥AB,求点P的坐标;
(3)连接AC,求△PAC面积的最大值及此时点P的坐标.
【分析】(1)抛物线y=ax2+bx﹣2,则c=﹣2,故OC=2,而OA=2OC=8OB,则OA=﹣4,OB=12,确定点A、B、C的坐标;即可求解;
(2)抛物线的对称轴为x=−74,当PC∥AB时,点P、C的纵坐标相同,即可求解;
(3)△PAC的面积S=S△PHA+S△PHC=12PH×OA,即可求解.
【解析】(1)抛物线y=ax2+bx﹣2,则c=﹣2,故OC=2,
而OA=2OC=8OB,则OA=﹣4,OB=12,
故点A、B、C的坐标分别为(﹣4,0)、(12,0)、(0,﹣2);
则y=a(x+4)(x−12)=a(x2+72x﹣2)=ax2+bx﹣2,故a=1,
故抛物线的表达式为:y=x2+72x﹣2;
(2)抛物线的对称轴为x=−74,
当PC∥AB时,点P、C的纵坐标相同,根据函数的对称性得点P(−74,﹣2);
(3)过点P作PH∥y轴交AC于点H,
由点A、C的坐标得,直线AC的表达式为:y=−12x﹣2,
则△PAC的面积S=S△PHA+S△PHC=12PH×OA=12×4×(−12x﹣2﹣x2−72x+2)=﹣2(x+2)2+8,
∵﹣2<0,
∴S有最大值,当x=﹣2时,S的最大值为8,此时点P(﹣2,﹣5).
13.(2020•重庆)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(−2,0),直线BC的解析式为y=−23x+2.
(1)求抛物线的解析式;
(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;
(3)将抛物线y=ax2+bx+2(a≠0)向左平移2个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.
【分析】(1)利用直线BC的解析式求出点B、C的坐标,则y=ax2+bx+2=a(x+2)(x﹣32)=ax2﹣22a﹣6a,即﹣6a=2,解得:a=13,即可求解;
(2)四边形BECD的面积S=S△BCE+S△BCD=12×EF×OB+12×(xD﹣xC)×BH,即可求解;
(3)分AE是平行四边形的边、AE是平行四边形的对角线两种情况,分别求解即可.
【解析】(1)直线BC的解析式为y=−23x+2,令y=0,则x=32,令x=0,则y=2,
故点B、C的坐标分别为(32,0)、(0,2);
则y=ax2+bx+2=a(x+2)(x﹣32)=a(x2﹣22x﹣6)=ax2﹣22a﹣6a,
即﹣6a=2,解得:a=13,
故抛物线的表达式为:y=−13x2+223x+2①;
(2)如图,过点B、E分别作y轴的平行线分别交CD于点H,交BC于点F,
∵AD∥BC,则设直线AD的表达式为:y=−23(x+2)②,
联立①②并解得:x=42,故点D(42,−103),
由点C、D的坐标得,直线CD的表达式为:y=−223x+2,
当x=32时,yBC=−23x+2=﹣2,即点H(32,﹣2),故BH=2,
设点E(x,−13x2+223x+2),则点F(x,−23x+2),
则四边形BECD的面积S=S△BCE+S△BCD=12×EF×OB+12×(xD﹣xC)×BH=12×(−13x2+223x+2+23x﹣2)×32+12×42×2=−22x2+3x+42,
∵−22<0,故S有最大值,当x=322时,S的最大值为2524,此时点E(322,52);
(3)存在,理由:
y=−13x2+223x+2=−13(x−2)2+83,抛物线y=ax2+bx+2(a≠0)向左平移2个单位,
则新抛物线的表达式为:y=−13x2+83,
点A、E的坐标分别为(−2,0)、(322,52);设点M(2,m),点N(n,s),s=−13n2+83;
①当AE是平行四边形的边时,
点A向右平移522个单位向上平移52个单位得到E,同样点M(N)向右平移522个单位向上平移52个单位得到N(M),
即2±522=n,
则s=−13n2+83=−112或56,
故点N的坐标为(722,−112)或(−322,76);
②当AE是平行四边形的对角线时,
由中点公式得:−2+322=n+2,解得:n=−22,
s=−13n2+83=156,
故点N的坐标(−22,52);
综上点N的坐标为:(722,−112)或(−322,76)或(−22,52).
14.(2020•重庆)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A(﹣3,﹣4),B(0,﹣1).
(1)求该抛物线的函数表达式;
(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求△PAB面积的最大值;
(3)将该抛物线向右平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.
【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;
(2)△PAB面积S=12×PH×(xB﹣xA)=12(x﹣1﹣x2﹣4x+1)×(0+3)=−32x2−92x,即可求解;
(3)分BC为菱形的边、菱形的的对角线两种情况,分别求解即可.
【解析】(1)将点A、B的坐标代入抛物线表达式得−4=9−3b+cc=−1,解得b=4c=−1,
故抛物线的表达式为:y=x2+4x﹣1;
(2)设直线AB的表达式为:y=kx+t,则−4=−3k+tt=−1,解得k=1t=−1,
故直线AB的表达式为:y=x﹣1,
过点P作y轴的平行线交AB于点H,
设点P(x,x2+4x﹣1),则H(x,x﹣1),
△PAB面积S=12×PH×(xB﹣xA)=12(x﹣1﹣x2﹣4x+1)×(0+3)=−32x2−92x,
∵−32<0,故S有最大值,当x=−32时,S的最大值为278;
(3)抛物线的表达式为:y=x2+4x﹣1=(x+2)2﹣5,
则平移后的抛物线表达式为:y=x2﹣5,
联立上述两式并解得:x=−1y=−4,故点C(﹣1,﹣4);
设点D(﹣2,m)、点E(s,t),而点B、C的坐标分别为(0,﹣1)、(﹣1,﹣4);
①当BC为菱形的边时,
点C向右平移1个单位向上平移3个单位得到B,同样D(E)向右平移1个单位向上平移3个单位得到E(D),
即﹣2+1=s且m+3=t①或﹣2﹣1=s且m﹣3=t②,
当点D在E的下方时,则BE=BC,即s2+(t+1)2=12+32③,
当点D在E的上方时,则BD=BC,即22+(m+1)2=12+32④,
联立①③并解得:s=﹣1,t=2或﹣4(舍去﹣4),故点E(﹣1,3);
联立②④并解得:s=1,t=﹣4±6,故点E(1,﹣4+6)或(1,﹣4−6);
②当BC为菱形的的对角线时,
则由中点公式得:﹣1=s﹣2且﹣4﹣1=m+t⑤,
此时,BD=BE,即22+(m+1)2=s2+(t+1)2⑥,
联立⑤⑥并解得:s=1,t=﹣3,
故点E(1,﹣3),
综上,点E的坐标为:(﹣1,2)或(﹣3,﹣4+6)或(﹣3,﹣4−6)或(1,﹣3).
15.(2020•乐山)已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连结BC,且tan∠CBD=43,如图所示.
(1)求抛物线的解析式;
(2)设P是抛物线的对称轴上的一个动点.
①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连结FB、FC,求△BCF的面积的最大值;
②连结PB,求35PC+PB的最小值.
【分析】(1)设抛物线的解析式为:y=a(x+1)(x﹣5),可得对称轴为直线x=2,由锐角三角函数可求点C坐标,代入解析式可求解析式;
(2)①先求出直线BC解析式,设P(2,t),可得点E(5−34t,t),点F(5−34t,2t−14t2),可求EF的长,由三角形面积公式和二次函数性质可求解;
②根据图形的对称性可知∠ACD=∠BCD,AC=BC=5,过点P作PG⊥AC于G,可得PG=35PC,可得35PC+PB=PG+PB,过点B作BH⊥AC于点H,则PG+PH≥BH,即BH是35PC+PB的最小值,由三角形面积公式可求解.
【解析】(1)根据题意,可设抛物线的解析式为:y=a(x+1)(x﹣5),
∵抛物线的对称轴为直线x=2,
∴D(2,0),
又∵tan∠CBD=43=CDDB,
∴CD=BD•tan∠CBD=4,
即C(2,4),
代入抛物线的解析式,得4=a(2+1)(2﹣5),
解得 a=−49,
∴二次函数的解析式为 y=−49(x+1)(x−5)=−49x2+169x+209;
(2)①设P(2,t),其中0<t<4,
设直线BC的解析式为 y=kx+b,
∴0=5k+b,4=2k+b.,
解得 k=−43,b=203.
即直线BC的解析式为 y=−43x+203,
令y=t,得:x=5−34t,
∴点E(5−34t,t),
把x=5−34t 代入y=−49(x+1)(x−5),得 y=t(2−t4),
即F(5−34t,2t−14t2),
∴EF=(2t−14t2)−t=t−t24,
∴△BCF的面积=12×EF×BD=32(t−t24)=−38(t2−4t)=−38(t−2)2+32,
∴当t=2时,△BCF的面积最大,且最大值为32;
②如图,连接AC,根据图形的对称性可知∠ACD=∠BCD,AC=BC=5,
∴sin∠ACD=ADAC=35,
过点P作PG⊥AC于G,则在Rt△PCG中,PG=PC⋅sin∠ACD=35PC,
∴35PC+PB=PG+PB,
过点B作BH⊥AC于点H,则PG+PH≥BH,
∴线段BH的长就是35PC+PB的最小值,
∵S△ABC=12×AB×CD=12×6×4=12,
又∵S△ABC=12×AC×BH=52BH,
∴52BH=12,
即BH=245,
∴35PC+PB的最小值为245.
16.(2020•达州)如图,在平面直角坐标系xOy中,已知直线y=12x﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1,0).
(1)求抛物线的解析式;
(2)在抛物线上是否存在一点P,使S△PAB=S△OAB?若存在,请求出点P的坐标,若不存在,请说明理由;
(3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MN+12ON的最小值.
【分析】(1)先求出点A,点B坐标,利用待定系数法可求解析式;
(2)分两种情况讨论,利用平行线之间的距离相等,可求OP解析式,EP''的解析式,联立方程组可求解;
(3)过点M作MF⊥AC,交AB于F,设点M(m,12m2−32m﹣2),则点F(m,12m﹣2),可求MF的长,由三角形面积公式可求△MAB的面积=﹣(m﹣2)2+4,利用二次函数的性质可求点M坐标,过点O作∠KOB=30°,过点N作KN⊥OK于K点,过点M作MR⊥OK于R,延长MF交直线KO于Q,由直角三角形的性质可得KN=12ON,可得MN+12ON=MN+KN,则当点M,点N,点K三点共线,且垂直于OK时,MN+12ON有最小值,即最小值为MP,由直角三角形的性质可求解.
【解析】(1)∵直线y=12x﹣2与x轴交于点A,与y轴交于点B,
∴点A(4,0),点B(0,﹣2),
设抛物线解析式为:y=a(x+1)(x﹣4),
∴﹣2=﹣4a,
∴a=12,
∴抛物线解析式为:y=12(x+1)(x﹣4)=12x2−32x﹣2;
(2)如图,当点P在直线AB上方时,过点O作OP∥AB,交抛物线与点P,
∵OP∥AB,
∴△ABP和△ABP是等底等高的两个三角形,
∴S△PAB=S△ABO,
∵OP∥AB,
∴直线PO的解析式为y=12x,
联立方程组可得y=12xy=12x2−32x−2,
解得:x=2+22y=1+2或x=2−22y=1−2,
∴点P(2+22,1+2)或(2﹣22,1−2);
当点P''在直线AB下方时,在OB的延长线上截取BE=OB=2,过点E作EP''∥AB,交抛物线于点P'',
∴AB∥EP''∥OP,OB=BE,
∴S△ABP''=S△ABO,
∵EP''∥AB,且过点E(0,﹣4),
∴直线EP''解析式为y=12x﹣4,
联立方程组可得y=12x−4y=12x2−32x−2,
解得x=2y=−3,
∴点P''(2,﹣3),
综上所述:点P坐标为(2+22,1+2)或(2﹣22,1−2)或(2,﹣3);
(3)如图2,过点M作MF⊥AC,交AB于F,
设点M(m,12m2−32m﹣2),则点F(m,12m﹣2),
∴MF=12m﹣2﹣(12m2−32m﹣2)=−12(m﹣2)2+2,
∴△MAB的面积=12×4×[−12(m﹣2)2+2]=﹣(m﹣2)2+4,
∴当m=2时,△MAB的面积有最大值,
∴点M(2,﹣3),
如图3,过点O作∠KOB=30°,过点N作KN⊥OK于K点,过点M作MR⊥OK于R,延长MF交直线KO于Q,
∵∠KOB=30°,KN⊥OK,
∴KN=12ON,
∴MN+12ON=MN+KN,
∴当点M,点N,点K三点共线,且垂直于OK时,MN+12ON有最小值,即最小值为MP,
∵∠KOB=30°,
∴直线OK解析式为y=3x,
当x=2时,点Q(2,23),
∴QM=23+3,
∵OB∥QM,
∴∠PQM=∠PON=30°,
∴PM=12QM=3+32,
∴MN+12ON的最小值为3+32.
17.(2019·海南)如图,已知抛物线y=ax2+bx+5经过A(–5,0),B(–4,–3)两点,与x轴的另一个交点为C,顶点为D,连结CD.
(1)求该抛物线的表达式;
(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.
①当点P在直线BC的下方运动时,求△PBC的面积的最大值;
②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.
【答案】(1)y=x2+6x+5.(2)①△PBC的面积的最大值为.②存在满足条件的点P的坐标为(0,5)和(–,–).
【解析】(1)将点A、B坐标代入二次函数表达式得:,解得,
故抛物线的表达式为:y=x2+6x+5.
(2)①如图1,过点P作PE⊥x轴于点E,交直线BC于点F.
在抛物线y=x2+6x+5中,
令y=0,则x2+6x+5=0,
解得x=–5,x=–1,
∴点C的坐标为(–1,0).
由点B(–4,–3)和C(–1,0),可得
直线BC的表达式为y=x+1.
设点P的坐标为(t,t2+6t+5),由题知–4
∴FP=(t+1)–(t2+6t+5)=–t2–5t–4,
∴S△PBC=S△FPB+S△FPC=·FP·3
=
=
=.
∵–4<–<–1,
∴当t=–时,△PBC的面积的最大值为.
②存在.
∵y=x2+6r+5=(x+3)2–4,
∴抛物线的顶点D的坐标为(–3,–4).
由点C(–l,0)和D(–3,–4),可得
直线CD的表达式为y=2x+2.
分两种情况讨论:
(i)当点P在直线BC上方时,有∠PBC=∠BCD,如图2.
若∠PBC=∠BCD,
则PB∥CD,
∴设直线PB的表达式为y=2x+b.
把B(–4,–3)代入y=2x+b,得b=5,
∴直线PB的表达式为y=2x+5.
由x2+6x+5=2x+5,解得x1=0,x2=–4(舍去),
∴点P的坐标为(0,5).
(ii)当点P在直线BC下方时,有∠PBC=∠BCD,如图3.
设直线BP与CD交于点M,则MB=MC.
过点B作BN⊥x轴于点N,则点N(–4,0),
∴NB=NC=3,
∴MN垂直平分线段BC.
设直线MN与BC交于点G,则线段BC的中点G的坐标为,
由点N(–4,0)和G,得
直线NG的表达式为y=–x–4.
∵直线CD:y=2x+2与直线NG:y=–x–4交于点M,
由2x+2=–x–4,解得x=–2,
∴点M的坐标为(–2,–2).
由B(–4,–3)和M(–2.–2),得
直线BM的表达式为y=.
由x2+6x+5=,解得x1=–,x2=–4(含去),
∴点P的坐标为(–,–).
综上所述,存在满足条件的点P的坐标为(0,5)和(–,–).
【名师点睛】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质、图形的面积计算等,其中(2),要主要分类求解,避免遗漏.
18.(2019•广西南宁)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,–1).
(1)直接写出A,B的坐标和抛物线C2的解析式;
(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;
(3)如图2,点F(–6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.
【答案】(1)A(–2,–1),B(2,3),y2=–x2+x+2;(2)存在,∴E(6,–1)或E(10,–13);(3)x的取值范围为–2≤x≤2,S的最大值为16.
【解析】(1)C1顶点在C2上,C2顶点也在C1上,
由抛物线C1:y1=x2+x可得A(–2,–1),
将A(–2,–1),D(6,–1)代入y2=ax2+x+c
得,解得 ,
∴y2=–x2+x+2,∴B(2,3);
(2)易得直线AB的解析式:y=x+1,
①若B为直角的顶点,BE⊥AB,kBE•kAB=–1,
∴kBE=–1,则直线BE的解析式为y=–x+5.
联立,
解得或,此时E(6,–1);
②若A为直角顶点,AE⊥AB,kAE•kAB=–1,
∴kAE=–1,则直线AE的解析式为y=–x–3,
联立,
解得或,
此时E(10,–13);
③若E为直角顶点,设E(m,–m2+m+2)
由AE⊥BE得kBE•kAE=–1,
即,
解得m=2或–2(不符合题意均舍去),
∴存在,∴E(6,–1)或E(10,–13);
(3)∵y1≤y2,观察图形可得:x的取值范围为–2≤x≤2,
设M(t,t2+t),N(t,−t2+t+2),且–2≤t≤2,
易求直线AF的解析式:y=–x–3,
过M作x轴的平行线MQ交AF于Q,
由yQ=yM,得Q(t2−t−3,t2+t),
S1=|QM|•|yF–yA|=t2+4t+6,
设AB交MN于点P,易知P坐标为(t,t+1),
S2=|PN|•|xA–xB|=2–t2,
S=S1+S2=4t+8,
当t=2时,S的最大值为16.
【名师点睛】本题考查了二次函数,熟练运用二次函数的性质、直角三角形的性质以及一次函数的性质是解题的关键.
中考数学复习重难题型真题再现(全国通用)专题15反比例函数与几何图形综合题(与三角形、与特殊四边形)特训(原卷版+解析): 这是一份中考数学复习重难题型真题再现(全国通用)专题15反比例函数与几何图形综合题(与三角形、与特殊四边形)特训(原卷版+解析),共76页。
中考数学复习重难题型真题再现(全国通用)专题14反比例函数性质综合特训(原卷版+解析): 这是一份中考数学复习重难题型真题再现(全国通用)专题14反比例函数性质综合特训(原卷版+解析),共57页。
中考数学复习重难题型真题再现(全国通用)专题13一次函数与几何图形综合题(函数与面积、与其他有关)特训(原卷版+解析): 这是一份中考数学复习重难题型真题再现(全国通用)专题13一次函数与几何图形综合题(函数与面积、与其他有关)特训(原卷版+解析),共32页。