2024年山东省滨州市沾化县数学九年级第一学期开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)抛物线的图象与坐标轴交点的个数是( )
A.没有交点B.只有一个交点
C.有且只有两个交点D.有且只有三个交点
2、(4分)如图,在矩形ABCD中,AB=4cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在这段时间内,线段PQ有( )次平行于AB?
A.1B.2C.3D.4
3、(4分)下列函数中是一次函数的为( )
A.y=8x2B.y=x+1C.y=D.y=
4、(4分)一个五边形的内角和为( )
A.540° B.450° C.360° D.180°
5、(4分)平行四边形的一个内角为50°,它的相邻的一个内角等于( )
A.40°B.50°C.130°D.150°
6、(4分)若代数式在实数范围内有意义,则的取值范围是
A.x<1B.x≤1C.x>1D.x≥1
7、(4分)分式运算正确的是( )
A.B.
C.D.
8、(4分)一种药品原价每盒 元,经过两次降价后每盒元,两次降价的百分率相同,设每次降价的百分率为,则符合题意的方程为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一个多边形的各内角都等于,则这个多边形的边数为______.
10、(4分)如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为_______________.
11、(4分)若分式方程有增根,则a的值为_____.
12、(4分)如图,在平面直角坐标系中,正方形OA1B1C1,B1A2B2C2,B2A3B3C3,…的顶点B1,B2,B3,…在x轴上,顶点C1,C2,C3,…在直线y=kx+b上,若正方形OA1B1C1,B1A2B2C2的对角线OB1=2,B1B2=3,则点C3的纵坐标是______________.
13、(4分)在Rt△ABC中,∠A=90°,有一个锐角为10°,BC=1.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为 .
三、解答题(本大题共5个小题,共48分)
14、(12分)某工厂新开发生产一种机器,每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤x≤70,且为整数),函数y与自变量x的部分对应值如表
(1)求y与x之间的函数关系式;
(2)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.
①该厂第一个月生产的这种机器40台都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)
②若该厂每月生产的这种机器当月全部售出,则每个月生产多少台这种机器才能使每台机器的利润最大?
15、(8分)化简:.
16、(8分)我市劲威乡A、B两村盛产柑橘,A村有柑橘200吨,B村有柑橘300吨,现将这些柑橘运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑橘重量为x吨,设 A、B两村运往两仓库的柑橘运输费用分别为yA元和yB元.
(1)请填写下表
(2)求出yA、yB与x之间的函数解析式;
(3)试讨论A、B两村中,哪个村的运费最少;
(4)考虑B村的经济承受能力,B村的柑橘运费不得超过4830元,在这种情况下,请问怎样调运才能使两村运费之和最小?求出这个最小值.
17、(10分)为贯彻党的“绿水青山就是金山银山”的理念,我市计划购买甲、乙两种树苗共7000株用于城市绿化,甲种树苗每株24元,一种树苗每株30元相关资料表明:甲、乙两种树苗的成活率分别为、.
若购买这两种树苗共用去180000元,则甲、乙两种树苗各购买多少株?
若要使这批树苗的总成活率不低于,则甲种树苗至多购买多少株?
在的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.
18、(10分)总书记说:“读可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同,求进馆人次的月平均增长率.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集______.
20、(4分)将矩形ABCD折叠,使得对角线的两个端点A.C重合,折痕所在直线交直线AB于点E,如果AB=4,BE=1,则BC的长为______.
21、(4分)一元二次方程x2-2x-k=0有两个相等的实数根,则k=________。
22、(4分)如图,已知在Rt△ABC中,∠A=90°,AB=3,BC=5,分别以Rt△ABC三条边为直径作半圆,则图中阴影部分的面积为_____.
23、(4分)如图,矩形ABCD中,点 E、F 分别在AB、CD上,EF∥BC,EF交BD于点G.若EG=5,DF=2,则图中两块阴影部分的面积之和为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)某项工程由甲、乙两个工程队合作完成,先由甲队单独做3天,剩下的工作由甲、乙两工程队合作完成,工程进度满足如图所示的函数关系:
(1)求出图象中②部分的解析式,并求出完成此项工程共需的天数;
(2)该工程共支付8万元,若按完成的工作量所占比例支付工资,甲工程队应得多少元?
25、(10分)如图,BD,CE是△ABC的高,G,F分别是BC,DE的中点,求证:FG⊥DE.
26、(12分)如图,在△ABC中,AC=BC,∠C=36°,AD平分∠BAC交BC于点D.求证:AB=DC.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题分析:令,转化为一元二次方程,根据根的判别式来判断方程是否有根,即可判断图象与x轴的交点个数,再令,即可判断图象与y轴的交点情况,从而得到结果。
令,得,
,
∴方程无解,即抛物线的图象与x轴没有交点,
令,则,即抛物线的图象与y轴的交点坐标为(1,-1),
综上,抛物线的图象与坐标轴交点的个数是一个,
故选B.
考点:本题考查的是抛物线与x轴的交点
点评:解答本题的关键是熟练掌握当二次函数与x轴有两个交点时,b2-4ac>1,与x轴有一个交点时,b2-4ac=1,与x轴没有交点时,b2-4ac<1.
2、D
【解析】
∵矩形ABCD,AD=12cm,
∴AD=BC=12cm,
∵PQ∥AB,AP∥BQ,
∴四边形ABQP是平行四边形,
∴AP=BQ,
∴Q走完BC一次就可以得到一次平行,
∵P的速度是1cm/秒,
∴两点运动的时间为12÷1=12s,
∴Q运动的路程为12×4=48cm,
∴在BC上运动的次数为48÷12=4次,
∴线段PQ有4次平行于AB,
故选D.
3、B
【解析】
根据一次函数的定义逐一分析即可.
【详解】
解:A、自变量次数不为1,故不为一次函数;
B、是一次函数;
C、为反比例函数;
D、分母中含有未知数不是一次函数.
所以B选项是正确的.
本土主要考查一次函数的定义:一次函数的定义条件是函数形式为y=kx+b(k、b为常数,k≠0,自变量次数为1).
4、A
【解析】【分析】直接利用多边形的内角和公式进行计算即可.
【详解】根据正多边形内角和公式:180°×(5﹣2)=540°,
即一个五边形的内角和是540度,
故选A.
【点睛】本题主要考查了正多边形内角和,熟练掌握多边形的内角和公式是解题的关键.
5、C
【解析】
利用平行四边形的邻角互补进而得出答案.
【详解】
解:∵平行四边形的一个内角为50°,邻角互补,
∴它的相邻的一个内角等于180°-50°=130°.
故选:C.
此题主要考查了平行四边形的性质,熟记平行四边形的邻角互补关系是解题关键.
6、D
【解析】
根据二次根式有意义的条件列出关于x 的不等式,求出x的取值范围即可.
【详解】
由题意得,x-1≥0,解得x≥1.故选D.
本题主要考查二次根式有意义的条件,要使二次根式有意义,其被开方数应为非负数.
7、C
【解析】
根据分式的运算法则即可判断.
【详解】
A. ,故错误;
B. ,故错误;
C. ,正确
D. ,故错误
故选C
此题主要考查分式的运算,解题的关键是熟知分式的性质.
8、D
【解析】
由题意可得出第一次降价后的价格为,第二次降价后的价格为,再根据两次降价后的价格为16元列方程即可.
【详解】
解:设每次降价的百分率为,由题意可得出:.
故选:D.
本题考查的知识点是一元二次方程的实际应用,找准题目中的等量关系是解此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、6
【解析】
由题意,这个多边形的各内角都等于,则其每个外角都是,再由多边形外角和是求出即可.
【详解】
解:∵这个多边形的各内角都等于,∴其每个外角都是,∴多边形的边数为,故答案为6.
本题考查了多边形的外角和,准确掌握多边形的有关概念及多边形外角和是是解题的关键.
10、
【解析】
设AC与BD交于点E,则∠ABE=60°,根据菱形的周长求出AB的长度,在RT△ABE中,求出AE,继而可得出AC的长.
【详解】
解:在菱形ABCD中,∠ABC=120°,
∴∠ABE=60°,AC⊥BD,
∵菱形ABCD的周长为16,
∴AB=4,
在RT△ABE中,AE=ABsin∠ABE=,
故可得AC=2AE=.
故答案为.
此题考查了菱形的性质,属于基础题,解答本题的关键是掌握菱形的基本性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
11、3
【解析】
分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.
【详解】
解:分式方程去分母得:x﹣5(x﹣3)=a,
由分式方程有增根,得到x﹣3=0,即x=3,
把x=3代入整式方程得:a=3,
故答案为:3
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
12、
【解析】
连接A1C1,A2C2,A3C3,分别交x轴于点E、F、G.根据正方形的性质,由OB1=2,B1B2=3可求点C1,C2的坐标,将点C1,C2的坐标代入y=kx+b中,得到关于k与b的方程组,求出方程组的解得到k与b的值,从而求出直线解析式,设B2G=C3G=t,表示出C3的坐标,代入直线方程中列出关于t的方程,求出方程的解得到t的值,确定出C3的纵坐标.
【详解】
解:如图,连接A1C1,A2C2,A3C3,分别交x轴于点E、F、G,
∵四边形OA1B1C1,B1A2B2C2,B2A3B3C3都是正方形,OB1=2,B1B2=3,
∴OE=EC1=EB1=OB1=1,B1F=FC2=FB2=B1B2=,OF=OB1+B1F=,
∴C1(1,1),C2(,),
将点C1,C2的坐标代入y=kx+b中,
得:,解得:,
∴直线解析式为y=x+,
设B2G=C3G=t,则有C3坐标为(5+t,t),
代入直线解析式得:t=(5+t)+,
解得:t=,
∴点C3的纵坐标是.
故答案是.
此题考查了一次函数图象上点的坐标特征,正方形的性质,利用待定系数法求一次函数解析式,求出点C1,C2的坐标是解本题的关键.
13、1或2或4
【解析】
如图1:
当∠C=10°时,∠ABC=30°,与∠ABP=30°矛盾;
如图2:
当∠C=10°时,∠ABC=30°,
∵∠ABP=30°,
∴∠CBP=10°,
∴△PBC是等边三角形,
∴CP=BC=1;
如图3:
当∠ABC=10°时,∠C=30°,
∵∠ABP=30°,
∴∠PBC=10°﹣30°=30°,
∴PC=PB,
∵BC=1,
∴AB=3,
∴PC=PB===2
如图4:
当∠ABC=10°时,∠C=30°,
∵∠ABP=30°,
∴∠PBC=10°+30°=90°,
∴PC=BC÷cs30°=4.
故答案为1或2或4.
考点:解直角三角形
三、解答题(本大题共5个小题,共48分)
14、 (1)y=-0.5x+65(10≤x≤70,且为整数);(2)①200万元;②10.
【解析】
(1)根据函数图象和图象中的数据可以求得y与x的函数关系式;
(2)①根据函数图象可以求得z与a的函数关系式,然后根据题意可知x=40,z=40,从而可以求得该厂第一个月销售这种机器的总利润;
②根据题意可以得到每台的利润和台数之间的关系式,从而可以解答本题.
【详解】
解:(1)设y与x的函数关系式为y=kx+b,
,得,
即y与x的函数关系式为y=-0.5x+65(10≤x≤70,且为整数);
(2)①设z与a之间的函数关系式为z=ma+n,
,得,
∴z与a之间的函数关系式为z=-a+90,
当z=40时,40=-a+90,得a=50,
当x=40时,y=-0.5×40+65=45,
40×50-40×45
=2000-1800
=200(万元),
答:该厂第一个月销售这种机器的总利润为200万元;
②设每台机器的利润为w万元,
W=(-x+90)-(-0.5x+65)=-x+25,
∵10≤x≤70,且为整数,
∴当x=10时,w取得最大值,
答:每个月生产10台这种机器才能使每台机器的利润最大.
故答案为(1)y=-0.5x+65(10≤x≤70,且为整数);(2)①200万元;②10.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.
15、
【解析】
根据分式的运算法则即可取出答案.
【详解】
解:原式
.
本题考查了分式的化简及学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.
16、(1)200-x,240-x,x+60;(2)yA=-5x+5000,yB=3x+4680;(3)40<x≤200时,yA<yB,A村运费较少,x=40时,yA=yB,,两村运费一样,x<40时,B村运费较少
(4)由A村运往C库50吨,运D库150吨,而B村运往C库190吨,运D库110吨则两村运费之和最小,为9580元
【解析】
(1)结合题意用含x的代数式表示填写即可;
(2)利用运送的吨数×每吨运输费用=总费用,列出函数解析式即可解答;
(3)由(1)中的函数解析式联立方程与不等式解答即可;
(4)首先由B村的荔枝运费不得超过4830元得出不等式,再由两个函数和,根据自变量的取值范围,求得最值.
【详解】
解:(1)A,B两村运输荔枝情况如表,
(2)yA=20x+25(200-x)=5000-5x,
yB=15(240-x)+18(x+60)=3x+4680;
(3)①当yA=yB,即5000-5x=3x+4680,
解得x=40,
当x=40,两村的运费一样多,
②当yA>yB,即5000-5x>3x+4680,
解得x<40,
当0<x<40时,A村运费较高,
③当yA<yB,即5000-5x<3x+4680,
解得x>40,
当40<x≤200时,B村运费较高;
(4)B村的荔枝运费不得超过4830元,
yB=3x+4680≤4830,
解得x≤50,
两村运费之和为yA+yB=5000-5x+3x+4680=9680-2x,
要使两村运费之和最小,所以x的值取最大时,运费之和最小,
故当x=50时,最小费用是9680-2×50=9580(元).
17、甲、乙两种树苗各购买5000、2000株;甲种树苗至多购买2800株;最少费用为 元.
【解析】
列方程求解即可;
根据题意,甲乙两种树苗的存货量大于等于树苗总量的列出不等式;
用x表示购买树苗的总费用,根据一次函数增减性讨论最小值.
【详解】
设购买甲种树苗x株,则购买乙种树苗株,
由题意得:
解得,则
答:甲、乙两种树苗各购买5000、2000株;
根据题意得:
解得
则甲种树苗至多购买2800株
设购买树苗的费用为W,
根据题意得:
随x的增大而减小
当时,
本题为一次函数实际应用问题,综合考察一元一次方程、一元一次不等式及一次函数的增减性.
18、进馆人次的月平均增长率为50%
【解析】
先分别表示出第二个月和第三个月的进馆人次,再根据第一个月的进馆人次加第二和第三个月的进馆人次等于608,列方程求解.
【详解】
设进馆人次的月平均增长率为x,则由题意得:
128+128(1+x)+128(1+x)2=608,
化简得:4x2+12x-7=0,
∴(2x-1)(2x+7)=0,
∴x=0.5=50%或x=-3.5(舍),
答:进馆人次的月平均增长率为50%.
本题属于一元二次方程的应用题,列出方程是解题的关键.本题难度适中,属于中档题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x>-1
【解析】
试题分析:根据题意可得即>,也就是函数在函数的上方,根据图象可得当x>-1时,函数在函数的上方.
考点:一次函数与一元一次不等式的关系.
20、或2
【解析】
分类讨论:当点E在线段AB上,连结CE,根据折叠的性质得到AE=CE=3,然后在Rt△BCE中,利用勾股定理计算BC;当点E在线段AB的延长线上,连结CE,根据折叠的性质得AE=CE=5,在Rt△BCE中,根据勾股定理计算BC.
【详解】
当点E在线段AB上,如图1,连结CE,
∵AB=4,BE=1,
∴AE=3,
∵将矩形ABCD折叠,使得对角线的两个端点A. C重合,
∴AE=CE=3,
在Rt△BCE中,BC=;
当点E在线段AB的延长线上,如图2,连结CE,
∵AB=4,BE=1,
∴AE=5,
∵将矩形ABCD折叠,使得对角线的两个端点A. C重合,
∴AE=CE=5,
在Rt△BCE中,BC=,
∴BC的长为或.
本题考查折叠问题,分情况解答是解题关键.
21、-1
【解析】
根据已知方程有两个相等的实数根,得出b2-4ac=0,建立关于k的方程,解方程求出k的值即可.
【详解】
∵ 一元二次方程x2-2x-k=0有两个相等的实数根,
∴b2-4ac=0,即4+4k=0
解之:k=-1
故答案为:-1
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式:△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
22、6
【解析】
首先在Rt△ABC中,∠A=90°,AB=3,BC=5,根据勾股定理,求出AC=4,然后求出以AC为直径的半圆面积为2π,以AB为直径的半圆面积为,以BC为直径的半圆面积为,Rt△ABC的面积为6,阴影部分的面积为2π+-(-6),即为6.
【详解】
解:∵在Rt△ABC中,∠A=90°,AB=3,BC=5,
∴
以AC为直径的半圆面积为2π,
以AB为直径的半圆面积为,
以BC为直径的半圆面积为,
Rt△ABC的面积为6
阴影部分的面积为2π+-(-6),即为6.
此题主要考查勾股定理和圆面积公式的运用,熟练掌握,即可得解.
23、1.
【解析】
由矩形的性质可得S△EBG=S△BGN,S△MDG=S△DFG,S△ABD=S△BDC,S△AEG=S四边形AEGM,S△FGC=S四边形GFCN,可得S四边形AEGM=S四边形GFCN,可得S△AEG=S△FGC=5,即可求解.
【详解】
解:如图,过点G作MN⊥AD于M,交BC于N,
∵EG=5,DF=2,
∴S△AEG=×5×2=5
∵AD∥BC,MN⊥AD
∴MN⊥BC,且∠BAD=∠ADC=∠DCB=∠ABC=90°,EF∥BC,
易证:四边形AMGE是矩形,四边形MDFG是矩形,四边形GFCN是矩形,四边形EGNB是矩形
∴S△EBG=S△BGN,S△MDG=S△DFG,S△ABD=S△BDC,S△AEG=S四边形AEGM,S△FGC=S四边形GFCN,
∴S四边形AEGM=S四边形GFCN,
∴S△AEG=S△FGC=5
∴两块阴影部分的面积之和为1.
故答案为:1.
本题考查矩形的性质,证明S△AEG=S△FGC=5是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1),完成此工程共需9天;(2)6万元.
【解析】
(1)设一次函数的解析式(合作部分)是y=kx+b,将(3,),(5,)代入,可求得函数解析式,令y=1,即可求得完成此项工程一共需要多少天.
(2)根据甲的工作效率是,于是得到甲9天完成的工作量是9×=,即可得到结论.
【详解】
解:(1)设一次函数的解析式(合作部分)是y=kx+b(k≠0,k,b是常数).
∵(3,),(5,)在图象上.
代入得
解得:
∴一次函数的表达式为y=x-.
当y=1时,x-=1,解得x=9,
∴完成此房屋装修共需9天;
(2)由图象知,甲的工作效率是,
∴甲9天完成的工作量是:9×=,
∴×8=6万元.
本题主要考查了一次函数的应用,待定系数法求函数解析式,数学公式(工作效率=工作总量÷工作时间)的灵活运用,能根据图象提供的数据进行计算是解此题的关键,题型较好.
25、如图,连接EG,DG.
∵CE是AB边上的高,
∴CE⊥AB.
在Rt△CEB中,G是BC的中点,∴.
同理,.∴EG=DG.
又∵F是ED的中点,∴FG⊥DE.
【解析】
根据题意连接EG,DG,利用直角三角形斜边上的中线的性质可得EG=DG,然后根据等腰三角形“三线合一”的性质即可解决.
26、详见解析
【解析】
根据等腰三角形的性质和三角形的内角和求出∠B=∠ADB,∠C=∠DAC解答即可.
【详解】
解:∵在△ABC中,AC=BC,∠C=36°,
∴∠B=∠BAC=72°,
∵AD平分∠BAC交BC于点D,
∴∠BAD=36°,∠DAC=36°,
∴∠ADB=72°,
∴∠B=∠ADB,
∴AB=AD,
∵∠C=∠DAC=36°,
∴AD=DC,
∴AB=DC.
此题考查等腰三角形的性质与判定,三角形的角平分线,关键是根据等腰三角形的性质和三角形的内角和解答.
题号
一
二
三
四
五
总分
得分
x单位:台)
10
20
30
y(单位:万元/台)
60
55
50
收收地地运运地地
C
D
总计
A
x吨
200-x
200吨
B
240-x
x+60
300吨
总计
240吨
260吨
500吨
2024年山东省滨州市无棣县九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024年山东省滨州市无棣县九年级数学第一学期开学学业质量监测模拟试题【含答案】,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广西梧州市九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024年广西梧州市九年级数学第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省瑶海区九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024年安徽省瑶海区九年级数学第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。