终身会员
搜索
    上传资料 赚现金

    2024年山东省济南槐荫区五校联考九年级数学第一学期开学考试模拟试题【含答案】

    立即下载
    加入资料篮
    2024年山东省济南槐荫区五校联考九年级数学第一学期开学考试模拟试题【含答案】第1页
    2024年山东省济南槐荫区五校联考九年级数学第一学期开学考试模拟试题【含答案】第2页
    2024年山东省济南槐荫区五校联考九年级数学第一学期开学考试模拟试题【含答案】第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年山东省济南槐荫区五校联考九年级数学第一学期开学考试模拟试题【含答案】

    展开

    这是一份2024年山东省济南槐荫区五校联考九年级数学第一学期开学考试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在平面直角坐标系中,点P(﹣3,4)关于y轴对称点的坐标为( )
    A.(﹣3,4)B.(3,4)C.(3,﹣4)D.(﹣3,﹣4)
    2、(4分)打折前购买A商品40件与购买B商品30件所花的钱一样多,商家打折促销,A商品打八折,B商品打九折,此时购买A商品40件比购买B商品30件少花600元,则打折前A商品和B商品每件的价格分别为( )
    A.75元,100元B.120元,160元
    C.150元,200元D.180元,240元
    3、(4分)直角三角形中,两直角边分别是6和8.则斜边上的中线长是( )
    A.B.C.D.
    4、(4分)一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )
    ①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h; ⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时
    A.2个B.3个C.4个D.5个
    5、(4分)今年我市有近2万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )
    A.这1000名考生是总体的一个样本B.近2万名考生是总体
    C.每位考生的数学成绩是个体D.1000名学生是样本容量
    6、(4分)已知点P(a,m),Q(b,n)都在反比例函数y=﹣的图象上,且a<0<b,则下列结论一定正确的是( )
    A.m<nB.m>nC.m+n<D.m+n>0
    7、(4分)下列事件为随机事件的是( )
    A.367人中至少有2人生日相同B.打开电视,正在播广告
    C.没有水分,种子发芽D.如果、都是实数,那么
    8、(4分)下列计算正确的是( )
    A.+=B.2+=C.2×=D.2﹣=
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一个弹簧不挂重物时长,挂上重物后伸长的长度与所挂重的质量成正比。如果挂上的质量后弹簧伸长,则弹簧的总长(单位:)关于所挂重物(单位:)的函数解析式是_________.
    10、(4分)已知,当=-1时,函数值为_____;
    11、(4分)对分式,,进行通分时,最简公分母是_____
    12、(4分)为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.
    13、(4分)方程的根是__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)计算:﹣(π﹣2019)0+2﹣1.
    15、(8分)解不等式组,并将解集在数轴上表示出来.
    16、(8分)如图,正比例函数与反比例函数的图像交于A,B两点,过点A作AC⊥x轴,垂足为C,△ACO的面积为1.
    (1)求反比例函数的表达式;
    (2)点B的坐标为 ;
    (3)当时,直接写出x的取值范围.
    17、(10分)某小区有一块四边形空地ABCD,如图所示,现计划在这块地上种植每平方米60元的草坪用以美化环境,施工人员测得(单位:米):AB=3,BC=4,CD=12,DA=13,∠B=90°,求小区种植这种草坪需多少钱?
    18、(10分)解不等式组,并在数轴上把解集表示出来.
    (1)
    (2)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是__.
    20、(4分)如果是两个不相等的实数,且满足,那么代数式_____.
    21、(4分)过某矩形的两个相对的顶点作平行线,再沿着平行线剪下两个直角三角形,剩余的图形为如图所示的▱ABCD,AB=4,BC=6,∠ABC=60°,则原来矩形的面积是__.
    22、(4分)如图,的周长为26,点,都在边上,的平分线垂直于,垂足为点,的平分线垂直于,垂足为点,若,则的长为______.
    23、(4分)如图,两个完全相同的正五边形ABCDE,AFGHM的边DE,MH在同一直线上,且有一个公共顶点A,若正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,则x的最小值为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)商场代售某品牌手机,原来每台的售价是3000元,一段时间后为了清库存,连续两次降价出售,现在的售价是1920元,求两次降价的平均降价率是多少?
    25、(10分)如图,在▱ABCD中,E是BC延长线上的一点,且DE=AB,连接AE、BD,证明AE=BD.
    26、(12分)如图,已知菱形 ,, 分别是 的中点,连接 、. 求证:四边形 是矩形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.
    【详解】
    解:点P(﹣3,4)关于y轴对称点的坐标为(3,4).
    故选:B.
    本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
    (1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
    (2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
    (3)关于原点对称的点,横坐标与纵坐标都互为相反数.
    2、C
    【解析】
    设打折前商品价格为元,商品为元,根据题意列出关于与的方程组,求出方程组的解即可得到结果.
    【详解】
    设打折前商品价格为元,商品为元,
    根据题意得:,
    解得:,
    则打折前商品价格为元,商品为元.
    故选:.
    此题考查了二元一次方程组的应用,分析题意,找到关键描述语,找到合适的等量关系时解决问题的关键.
    3、C
    【解析】
    利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.
    【详解】
    解:由勾股定理得,斜边==10,
    所以,斜边上的中线长=×10=1.
    故选:C.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.
    4、B
    【解析】
    根据图形给出的信息求出两车的出发时间,速度等即可解答.
    【详解】
    解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.
    ②慢车0时出发,快车2时出发,故正确.
    ③快车4个小时走了276km,可求出速度为69km/h,错误.
    ④慢车6个小时走了276km,可求出速度为46km/h,正确.
    ⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.
    ⑥快车2时出发,14时到达,用了12小时,错误.
    故答案选B.
    本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.
    5、C
    【解析】
    试题分析:1000名考生的数学成绩是总体的一个样本;近8万多名考生的数学成绩是总体;每位考生的数学成绩是个体;1000是样本容量.
    考点:(1)、总体;(2)、样本;(3)、个体;(4)、样本容量.
    6、B
    【解析】
    根据反比例点P(a,m),Q(b,n)都在反比例函数y=﹣ 的图象上,且a<0<b,可以判断点P和点Q所在的象限,进而判断m和n的大小.
    【详解】
    解:∵点P(a,m),Q(b,n)都在反比例函数y=﹣的图象上,且a<0<b,
    ∴点P在第二象限,点Q在第四象限,
    ∴m>0>n;
    故选:B.
    本题主要考查反比例函数的性质,关键在于根据反比例函数的k值判断反比例函数的图象分布.
    7、B
    【解析】
    根据事件发生的可能性大小判断相应事件的类型即可.
    【详解】
    A. 367人中至少有2人生日相同 ,是必然事件,故A不符合题意;
    B. 打开电视,正在播广告,是随机事件,故B符合题意;
    C. 没有水分,种子发芽, 是不可能事件,故C不符合题意;
    D. 如果、都是实数,那么,是必然事件,故D不符合题意.
    故选B.
    本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    8、D
    【解析】
    根据无理数的加法、减法、乘法法则分别计算即可.
    【详解】
    解:∵ 不能合并,故选项A错误,
    ∵2+不能合并,故选项B错误,
    ∵2×=2,故选项C错误,
    ∵ ,故选项D正确,
    故选D.
    无理数的运算是本题的考点,熟练掌握其运算法则是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    弹簧总长弹簧原来的长度挂上重物质量时弹簧伸长的长度,把相关数值代入即可.
    【详解】
    解:挂上的物体后,弹簧伸长,
    挂上的物体后,弹簧伸长,
    弹簧总长.
    故答案为:.
    本题考查了由实际问题抽象一次函数关系式的知识,得到弹簧总长的等量关系是解决本题的关键.
    10、-1
    【解析】
    将x=-1,代入y=2x+1中进行计算即可;
    【详解】
    将x=-1代入y=2x+1,得y=-1;
    此题考查求函数值,解题的关键是将x的值代入进行计算;
    11、8xy1
    【解析】
    由于几个分式的分母分别是1x、4y、8xy1,首先确定1、4、8的最小公倍数,然后确定各个字母的最高指数,由此即可确定它们的最简公分母.
    【详解】
    根据最简公分母的求法得:
    分式,,的最简公分母是8xy1,
    故答案为8xy1.
    此题主要考查了几个分式的最简公分母的确定,确定公分母的系数找最小公倍数,确定公分母的字母找最高指数.
    12、120
    【解析】
    【分析】设原计划每天种树x棵,则实际每天种树2x棵,根据题意列出分式方程,解之即可.
    【详解】设原计划每天种树x棵,则实际每天种树2x棵,
    依题可得:,
    解得:x=120,
    经检验x=120是原分式方程的根,
    故答案为:120.
    【点睛】本题考查了列分式方程解应用题,弄清题意,找出等量关系是解题的关键.
    13、
    【解析】
    解1x4=31得x1=4或x1=-4(舍),再解x1=4可得.
    【详解】
    解:1x4=31,
    x4=16,
    x1=4或x1=-4(舍),
    ∴x=±1,
    故答案为:x=±1.
    本题考查解高次方程的能力,利用平方根的定义降幂、求解是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、
    【解析】
    本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
    【详解】
    解:原式.
    本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.
    15、不等式组的解集是﹣1<x≤3.
    【解析】
    分析:根据不等式组分别求出x的取值,然后画出数轴,在数轴上找出公共部分就是该不等式的解集.
    详解:
    由①得:x≤3,
    由②得:x>﹣1,
    ∴不等式组的解集是﹣1<x≤3,
    在数轴上表示不等式组的解集为:

    点睛:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,根据口诀:大小小大中间找确定不等式组的解集,由“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.
    16、解: ;
    (2)B(-2,-1);
    (3)-20;
    (2)联立正比例函数与反比例函数,解出的x,y分别为交点的横、纵坐标,这里需注意解得的解集有两个,说明交点有两个,需要考虑点所在位于哪一个象限;
    (3)观察图像可以解决问题,谁的图像在上面,谁对应的函数值大,这里需过两个交点作x轴垂线,两条垂线与y轴将图象分成四部分,分别讨论.
    【详解】
    解:(1)∵△ACO的面积为1,C⊥x轴
    ∴,
    即,
    ∵点A是函数的点
    ∴,
    ∵反比例函数的图像在第一、三象限,
    ∴k>0
    ∴k=8,反比例函数表达式为 ;
    (2)联立 ,可解得 或,
    ∵B点在第三象限,
    ∴点B坐标为(-2,-1).
    (3)根据(2)易得A点坐标为(2,1),
    所以当-20;
    (2)考查函数交点问题,两个函数的交点的横、纵坐标分别是联立它们,所形成的方程组的解集对应的x、y值;
    (3)可借助图象比较两个函数的大小,这里一定要注意分不同区间去考虑.
    17、小区种植这种草坪需要2160元.
    【解析】
    仔细分析题目,需要求得四边形的面积才能求得结果.连接AC,在直角三角形ABC中可求得AC的长,由AC、CD、AD的长度关系可得三角形ACD为直角三角形,AD为斜边;由此看,四边形ABCD由Rt△ABC和Rt△ACD构成,则容易求解.
    【详解】
    如图,连接AC,
    ∵在△ABC中,AB=3,BC=4,∠B=90°,
    ∴AC==5,
    又∵CD=12,DA=13,
    ∴AD2=AC2+CD2=169,
    ∴∠ACD=90°,
    ∴S四边形ABCD=S△ABC+S△ACD=AB•BC+AC•CD=×3×4+×5×12=36(平方米),
    ∴60×36=2160(元),
    答:小区种植这种草坪需要2160元.
    本题考查了勾股定理以及其逆定理的应用,熟练掌握是解题的关键.
    18、(1),数轴见解析;(2),数轴见解析
    【解析】
    (1)分别解两个不等式,找出两个解集的公共部分,即为不等式组的解集,再将不等式组的解集在数轴上表示出来即可,
    (2)分别解两个不等式,找出两个解集的公共部分,即为不等式组的解集,再将不等式组的解集在数轴上表示出来即可.
    【详解】
    解:(1)解不等式2x-6<3x得:x>-6,
    解不等式得:x≤13,
    ∴不等式组的解集为:,
    不等式组的解集在数轴上表示如下:
    (2)解不等式,
    解得:x,
    解不等式5x-1<3(x+1),
    解得:x<2,
    即不等式组的解集为:,
    不等组的解集在数轴上表示如下:
    本题考查解一元一次不等式组和在数轴上表示不等式的解集,正确掌握解一元一次不等式组的方法是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    试题分析:首先设点P的坐标为(x,y),根据矩形的周长可得:2(x+y)=10,则y=-x+5,即该直线的函数解析式为y=-x+5.
    20、1
    【解析】
    由于m,n是两个不相等的实数,且满足m2-m=3,n2-n=3,可知m,n是x2-x-3=0的两个不相等的实数根.则根据根与系数的关系可知:m+n=1,mn=-3,又n2=n+3,利用它们可以化简,然后就可以求出所求的代数式的值.
    【详解】
    解:由题意可知:m,n是两个不相等的实数,且满足m2-m=3,n2-n=3,
    所以m,n是x2-x-3=0的两个不相等的实数根,
    则根据根与系数的关系可知:m+n=1,mn=-3,
    又n2=n+3,
    则2n2-mn+2m+2015
    =2(n+3)-mn+2m+2015
    =2n+6-mn+2m+2015
    =2(m+n)-mn+2021
    =2×1-(-3)+2021
    =2+3+2021
    =1.
    故答案为:1.
    本题考查一元二次方程根与系数的关系,解题关键是把所求代数式化成两根之和、两根之积的系数,然后利用根与系数的关系式求值.
    21、16或21
    【解析】
    分两种情况,由含30°角的直角三角形的性质求出原来矩形的长和宽,即可得出面积.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AD=BC=6,CD=AB=4,
    分两种情况:
    ①四边形BEDF是原来的矩形,如图1所示:
    则∠E=∠EBF=90°,
    ∴∠ABE=90°﹣∠ABC=30°,
    ∴AE=AB=2,BE=AE=2,
    ∴DE=AE+AD=8,
    ∴矩形BEDF的面积=BE×DE=2×8=16;
    ②四边形BGDH是原来的矩形,如图2所示:
    同①得:CH=BC=3,BH=CH=3
    ∴DH=CH+CD=7,
    ∴矩形BGDH的面积=BH×DH=3×7=21;
    综上所述,原来矩形的面积为16或21;
    故答案为:16或21.
    本题考查了矩形的性质、平行四边形的性质、含30°角的直角三角形的性质,熟练掌握矩形的性质和平行四边形的性质是解题的关键.
    22、3
    【解析】
    首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ.
    【详解】
    由题知为的垂直平分线,
    ,由题意知为的垂直平分线,.
    ,且,.
    ..
    .又点,分别为,的中点,

    本题考查等腰三角形的判定与性质,解题关键在于利用中位线定理求出PQ.
    23、144°.
    【解析】
    根据多边形的内角和定理分别求出∠BAE=∠AED=∠FAM=∠AMH,即可求出∠EAM和∠BAF的度数,根据旋转的性质,分顺时针和逆时针讨论,取x的最小值.
    【详解】
    ∵五边形ABCDE,AFGHM是正五边形
    ∴∠BAE=∠AED=∠FAM=∠AMH108°,
    ∴∠AEM=∠AME=72°,
    ∴∠EAM=180°﹣72°﹣72°=36°,
    ∠BAF=360°-∠BAE -∠FAM-∠EAM=108°,
    ∵正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,
    顺时针旋转最小需:36°+108°=144°,逆时针旋转最小需:108°+108°=216°,
    ∴x的最小值为36°+108°=144°
    故答案为:144°.
    本题考查多边形的内角和外角,旋转的性质.能分情况讨论找出旋转前后对应线段并由此计算旋转角是解决此题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、20%
    【解析】
    设平均每次降价率为x,那么原价格×(1-x)2=两次降价后的现价,把相应数值代入即可求解.
    【详解】
    解:设平均每次降价率为x,依题意得:

    解得:,(不合题意舍去),
    答:平均每次的降价率为20%.
    本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为.
    25、见解析
    【解析】
    首先根据平行四边形的性质可得AB=CD,AB∥CD,再根据等腰三角形的性质可得∠DCE=∠DEC,即可证明△ABE≌△DEB,再根据全等三角形性质可得到结论.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴AB∥DC,AB=DC,
    ∵DE=AB,
    ∴DE=DC.
    ∴∠DCE=∠DEC,
    ∵AB∥DC,
    ∴∠ABC=∠DCE.
    ∴∠ABC=∠DEC.
    在△ABE与△DEB中

    ∴△ABE≌△DEB(SAS).
    ∴AE=BD.
    本题考查了平行四边形的性质,全等三角形的判定和性质,以及等腰三角形的性质,解题的关键是根据图中角的关系,找出证明全等的条件.
    26、见解析
    【解析】
    试题分析:根据菱形的四条边都相等可得AB=BC,然后判断出△ABC是等边三角形,然后根据等腰三角形三线合一的性质可得AE⊥BC,∠AEC=90°,再根据菱形的对边平行且相等以及中点的定义求出AF与EC平行且相等,从而判定出四边形AECF是平行四边形,再根据有一个角是直角的平行四边形是矩形即可得证.
    证明:∵四边形ABCD是菱形,
    ∴AB=BC,
    又∵AB=AC,
    ∴△ABC是等边三角形,
    ∵E是BC的中点,
    ∴AE⊥BC(等腰三角形三线合一),
    ∴∠AEC=90°,
    ∵E、F分别是BC、AD的中点,
    ∴AF=AD,EC=BC,
    ∵四边形ABCD是菱形,
    ∴AD∥BC且AD=BC,
    ∴AF∥EC且AF=EC,
    ∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),
    又∵∠AEC=90°,
    ∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形).
    【点评】本题考查了矩形的判定,菱形的性质,平行四边形的判定的应用,等边三角形的判定与性质,证明得到四边形AECF是平行四边形是解题的关键,也是突破口.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024-2025学年山东省济南七校联考数学九年级第一学期开学质量跟踪监视模拟试题【含答案】:

    这是一份2024-2025学年山东省济南七校联考数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省济南市槐荫区2023-2024学年九年级下学期开学考试数学试题+:

    这是一份山东省济南市槐荫区2023-2024学年九年级下学期开学考试数学试题+,共15页。

    山东省济南槐荫区五校联考2023-2024学年数学九年级第一学期期末联考模拟试题含答案:

    这是一份山东省济南槐荫区五校联考2023-2024学年数学九年级第一学期期末联考模拟试题含答案,共7页。试卷主要包含了如果点与点关于原点对称,则,中,,若,,则的长为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map