|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年山东省济南市钢城区实验学校九年级数学第一学期开学统考模拟试题【含答案】
    立即下载
    加入资料篮
    2024年山东省济南市钢城区实验学校九年级数学第一学期开学统考模拟试题【含答案】01
    2024年山东省济南市钢城区实验学校九年级数学第一学期开学统考模拟试题【含答案】02
    2024年山东省济南市钢城区实验学校九年级数学第一学期开学统考模拟试题【含答案】03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年山东省济南市钢城区实验学校九年级数学第一学期开学统考模拟试题【含答案】

    展开
    这是一份2024年山东省济南市钢城区实验学校九年级数学第一学期开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,已知菱形ABCD的周长为24,对角线AC、BD交于点O,且AC+BD=16,则该菱形的面积等于( )
    A.6B.8C.14D.28
    2、(4分)如图,在△ABC中,AB、AC的垂直平分线l1、l2相交于点O,若∠BAC等于82°,则∠OBC等于( )
    A.8°B.9°C.10°D.11°
    3、(4分)我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是( )
    A.71.8B.77C.82D.95.7
    4、(4分)如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是( )
    A.AO=OCB.AC=BDC.AC⊥BDD.BD平分∠ABC
    5、(4分)如图是甲、乙两名射击运动员的10次射击训练成绩的折线统计图.观察统计图,下列关于甲、乙这10次射击成绩的方差判断正确的是( )
    A.甲的方差大于乙的方差B.乙的方差大于甲的方差
    C.甲、乙的方差相等D.无法判断
    6、(4分)若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )
    A.k<5B.k<5,且k≠1C.k≤5,且k≠1D.k>5
    7、(4分)如图,,,点在边上(与、不重合),四边形为正方形,过点作,交的延长线于点,连接,交于点,对于下列结论:①;②四边形是矩形;③.其中正确的是( )
    A.①②③B.①②C.①③D.②③
    8、(4分)如图,在任意四边形ABCD中,M,N,P,Q分别是AB,BC,CD,DA上的点,对于四边形MNPQ的形状,以下结论中,错误的是
    A.当M,N,P,Q是各边中点,四边MNPQ一定为平行四边形
    B.当M,N,P,Q是各边中点,且时,四边形MNPQ为正方形
    C.当M,N、P,Q是各边中点,且时,四边形MNPQ为菱形
    D.当M,N、P、Q是各边中点,且时,四边形MNPQ为矩形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在中,为边上一点,以为边作矩形.若,,则的大小为______度.

    10、(4分)如图,点A的坐标为,点B在直线上运动则线段AB的长度的最小值是___.
    11、(4分)如图,正方形的对角线与相交于点,正方形绕点旋转,直线与直线相交于点,若,则的值是____.
    12、(4分)从沿北偏东的方向行驶到,再从沿南偏西方向行驶到,则______.
    13、(4分)已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)解一元二次方程.
    (1) (2)
    15、(8分)先化简,再求值:,其中x是不等式的负整数解.
    16、(8分)已知在中,是的中点,,垂足为,交于点,且.
    (1)求的度数;
    (2)若,,求的长.
    17、(10分)如图,每个小正方形的边长均为1,求证:△ABC是直角三角形.
    18、(10分)天坛是明清两代皇帝每年祭天和祈祷五谷丰收的地方,以其严谨的建筑布局、奇特的建筑构造和瑰丽的建筑装饰著称于世,被列为世界文化遗产.
    小惠同学到天坛公园参加学校组织的综合实践活动,她分别以正东,正北方向为x轴,y轴的正方向建立了平面直角坐标系描述各景点的位置.
    小惠:“百花园在原点的西北方向;表示回音壁的点的坐标为”
    请依据小惠同学的描述回答下列问题:
    请在图中画出小惠同学建立的平面直角坐标系;
    表示无梁殿的点的坐标为______;
    表示双环万寿亭的点的坐标为______;
    将表示祈年殿的点向右平移2个单位长度,再向下平移个单位长度,得到表示七星石的点,那么表示七星石的点的坐标是______.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)计算:=_____.
    20、(4分)如图,在菱形ABCD中,AC、BD交于点O,AC=6,BD=8,若DE∥AC,CE∥BD,则OE的长为_____.
    21、(4分)如图,正方形ABCD的边长为2,点E、F分别是CD、BC的中点,AE与DF交于点P,连接CP,则CP=_____.
    22、(4分)如图,在中,,、分别是、的中点,延长到点,使,则_____________.
    23、(4分)命题“如果x=y,那么”的逆命题是 ____________________________________________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,直线y= x+6分别与x轴、y轴交于A、B两点:直线y= x与AB于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的进度沿x轴向左运动.过点E作x轴的垂线,分別交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠的图形的周长为L个单位长度,点E的运动时间为t(秒).
    (1)直接写出点C和点A的坐标.
    (2)若四边形OBQP为平行四边形,求t的值.
    (3)025、(10分)嘉淇同学要证明命“两相对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.
    已知:如图,在四边形ABCD中,
    BC=AD,
    AB=____.
    求证:四边形ABCD是____四过形.
    (1)在方框中填空,以补全已知和求证;
    (2)按嘉淇的想法写出证明:
    证明:
    (3)用文宇叙述所证命题的逆命题为____________________.
    26、(12分)如图,设线段AB的中点为C,以AC和CB为对角线作平行四边形AECD、又作平行四边形CFHD、CGKE.
    求证:H,C,K三点共线.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    首先根据题意求出的长度,然后利用菱形的性质以及勾股定理的知识求出的值,最后结合三角形的面积公式即可求出答案.
    【详解】
    解:四边形是菱形,
    ,,
    菱形的周长为24,






    菱形的面积三角形的面积,
    故选D.
    本题主要考查了菱形的性质,解题的关键是利用菱形的性质以及勾股定理的知识求出的值.
    2、A
    【解析】
    连接OA,根据三角形内角和定理求出∠ABC+∠ACB,根据线段垂直平分线的性质、等腰三角形的性质得到∠OAB=∠OBA,∠OAC=∠OCA,根据三角形内角和定理计算即可.
    【详解】
    解:连接OA,
    ∵∠BAC=82°,
    ∴∠ABC+∠ACB=180°﹣82°=98°,
    ∵AB、AC的垂直平分线交于点O,
    ∴OB=OA,OC=OA,
    ∴∠OAB=∠OBA,∠OAC=∠OCA,
    ∴∠OBC+∠OCB=98°﹣(∠OBA+∠OCA)=16°,
    ∴∠OBC=8°,
    故选:A.
    本题考查的是线段垂直平分线的性质、三角形内角和定理,掌握垂直平分线上任意一点,到线段两端点的距离相等是解题的关键.
    3、C
    【解析】
    平均数是指在一组数据中所有数据之和再除以数据的个数,因此,
    。故选C。
    4、B
    【解析】
    分析:根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.
    详解:添加的条件是AC=BD.理由是:
    ∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.
    故选B.
    点睛:本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形.
    5、A
    【解析】
    结合图形,乙的成绩波动比较小,则波动大的方差就小.
    【详解】
    解:从图看出:乙选手的成绩波动较小,说明它的成绩较稳定,甲的波动较大,则其方差大.
    故选A.
    本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    6、B
    【解析】
    试题解析:∵关于x的一元二次方程方程有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.
    7、A
    【解析】
    由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;
    由△AFG≌△DAC,推出四边形BCGF是矩形,②正确;
    由矩形的性质和相似三角形的判定定理证出△ACD∽△FEQ,③正确.
    【详解】
    解:①∵四边形ADEF为正方形,
    ∴∠FAD=90°,AD=AF=EF,
    ∴∠CAD+∠FAG=90°,
    ∵FG⊥CA,
    ∴∠GAF+∠AFG=90°,
    ∴∠CAD=∠AFG,
    在△FGA和△ACD中,,
    ∴△FGA≌△ACD(AAS),
    ∴AC=FG.
    故正确;
    ②∵BC=AC,
    ∴FG=BC,
    ∵∠ACB=90°,FG⊥CA,
    ∴FG∥BC,
    ∴四边形CBFG是矩形.
    故正确;
    ③∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
    ∴△ACD∽△FEQ.
    故正确.
    综上所述,正确的结论是①②③.
    故选A.
    本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.
    8、B
    【解析】
    连接AC、BD,根据三角形中位线定理得到,,,,根据平行四边形、矩形、菱形、正方形的判定定理判断即可.
    【详解】
    解:连接AC、BD交于点O,
    ,N,P,Q是各边中点,
    ,,,,
    ,,
    四边MNPQ一定为平行四边形,A说法正确,不符合题意;
    时,四边形MNPQ不一定为正方形,B说法错误,符合题意;
    时,,
    四边形MNPQ为菱形,C说法正确,不符合题意;
    时,,
    四边形MNPQ为矩形,D说法正确,不符合题意.
    故选B.
    本题考查的是中点四边形,掌握平行四边形、矩形、菱形、正方形的判定定理、三角形中位线定理是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    利用三角形内角和求出∠B的度数,利用平行四边形的性质即可解答问题.
    【详解】
    解:在矩形AEFG中,∠AEF=90°
    ∵∠AEB+∠AEF+∠CEF=180°,
    ∠CEF=15°
    ∴∠AEB=75°
    ∵∠BAE+∠B+∠AEB=180°
    ∠BAE=40°
    ∴∠B=65°
    ∵∠D=∠B
    ∴∠D=65°
    故答案为65°
    考察了平行四边形的性质及三角形的内角和,掌握平行四边形的性质是解题的关键.
    10、
    【解析】
    当线段AB最短时,直线AB与直线垂直,根据勾股定理求得AB的最短长度.
    【详解】
    解:当线段AB最短时,直线AB与直线垂直,
    过点A作直线l,
    因为直线是一、三象限的角平分线,
    所以,
    所以,
    所以,
    ,即,
    所以.
    故答案是:.
    考查了垂线段最短的性质,一次函数图象上点的坐标特征,勾股定理的应用,熟知垂线段最短是解题的关键.
    11、
    【解析】
    如图,设EF交AB于M,EH交BC于N,PF交EH于O,作PT⊥AD于T交BC于R.首先证明∠CPB=90°,求出DT,PT即可解决问题.
    【详解】
    解:如图,设EF交AB于M,EH交BC于N,PF交EH于O,作PT⊥AD于T交BC于R.
    ∵四边形ABCD是正方形,
    ∴AC⊥BD,AE=EB,∠EAM=∠EBN=45°,
    ∵四边形EFGH是正方形,
    ∴∠MEN=∠AEB=90°,
    ∴∠AEM=∠BEN,
    ∴△AEM≌△BEN(ASA),
    ∴AM=BN,EM=EN,∠AME=∠BNE,
    ∵AB=BC,EF=EH,
    ∴FM=NH,BM=CN,
    ∵∠FMB=∠AME,∠CNH=∠BNE,
    ∴∠FMB=∠CNH,
    ∴△FMB≌△HNC(SAS),
    ∴∠MFB=∠NHC,
    ∵∠EFO+∠EOF=90°,∠EOF=∠POH,
    ∴∠POH+∠PHO=90°,
    ∴∠OPH=∠BPC=90°,
    ∵∠DBP=75°,∠DBC=45°,
    ∴∠CBP=30°,
    ∵BC=AB=2,
    ∴PB=BC•cs30°=,PR=PB=,RC=PR•tan30°=,
    ∵∠RTD=∠TDC=∠DCR=90°,
    ∴四边形TDCR是矩形,
    ∴TD=CR=,TR=CD=AB=2,
    在Rt△PDT中,PD2=DT2+PT2=,
    故答案为.
    本题考查全等三角形的判定和性质,旋转变换,正方形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    12、40
    【解析】
    根据方位角的概念,画图正确表示出行驶的过程,再根据已知转向的角度结合三角形的内角和与外角的关系求解.
    【详解】
    如图,A沿北偏东60°的方向行驶到B,则∠BAC=90°-60°=30°,
    B沿南偏西20°的方向行驶到C,则∠BCO=90°-20°=70°,
    又∵∠ABC=∠BCO-∠BAC,∴∠ABC=70°-30°=40°.
    故答案为:40°
    解答此类题需要从运动的角度,正确画出方位角,再结合三角形的内角和与外角的关系求解.
    13、-2
    【解析】
    试题分析:根据题意可得2k+3>2,k<2,解得﹣<k<2.因k为整数,所以k=﹣2.
    考点:一次函数图象与系数的关系.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)x1=3,x2=6; (2) x1=2+,x2=2-.
    【解析】
    (1)利用因式分解法即可求解;
    (2)利用配方法解方程即可求解.
    【详解】
    (1)


    ∴,,
    解得:x1=3,x2=6;
    (2)

    ∴,
    ∴,
    解得x1=2+,x2=2-.
    此题分别考查了一元二次方程的几种解法,解题的关键是根据不同的方程的形式选择最佳方法解决问题.
    15、;3
    【解析】
    先将括号里面的通分后,将除法转换成乘法,约分化简.然后解一元一次不等式求出负整数解,代x的值求值.
    【详解】
    解:原式=
    解得,负整数解为
    将代入原式=
    16、(1)90°(1)1.4
    【解析】
    (1)连接CE,根据线段垂直平分线的性质转化线段BE到△AEC中,利用勾股定理的逆定理可求∠A度数;
    (1)设AE=x,则AC可用x表示,在Rt△ABC中利用勾股定理得到关于x的方程求解AE值.
    【详解】
    (1)连接CE,∵D是BC的中点,DE⊥BC,
    ∴CE=BE.
    ∵BE1−AE1=AC1,
    ∴AE1+AC1=CE1.
    ∴△AEC是直角三角形,∠A=90°;
    (1)在Rt△BDE中,BE==2.
    所以CE=BE=2.
    设AE=x,则在Rt△AEC中,AC1=CE1−AE1,
    所以AC1=12−x1.
    ∵BD=4,
    ∴BC=1BD=3.
    在Rt△ABC中,根据BC1=AB1+AC1,
    即64=(2+x)1+12−x1,
    解得x=1.4.
    即AE=1.4.
    本题主要考查了勾股定理及其逆定理,解题的关键是利用勾股定理求解线段长度,选择直角三角形借助勾股定理构造方程是解这类问题通用方法.
    17、答案见详解.
    【解析】
    根据勾股定理计算出、、,再根据勾股定理逆定理可得是直角三角形.
    【详解】
    证明:,,,

    是直角三角形.
    此题主要考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长,,满足,那么这个三角形就是直角三角形.
    18、画平面直角坐标系见解析;,;.
    【解析】
    (1)直接利用回音壁的点的坐标为(0,-2),得出原点位置,建立平面直角坐标系即可;
    (2)利用所画平面直角坐标系得出各点坐标即可;
    (3)利用平移的性质得出七星石的点的坐标.
    【详解】
    画出平面直角坐标系如图;
    表示无梁殿的点的坐标为点;
    表示双环万寿亭的点的坐标为;
    故答案为,;
    表示七星石的点的坐标是.
    故答案为.
    本题考查了平移变换以及用坐标表示地理位置,正确建立平面直角坐标系是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    先通分,再把分子相加减即可.
    【详解】
    解:原式=

    故答案为:
    本题考查的是分式的加减,熟知异分母的分式相加减的法则是解答此题的关键.
    20、1
    【解析】
    根据菱形的性质得出AC⊥BD,由勾股定理可求AD=CD=1,再根据平行四边形的判定定理得四边形OCED为平行四边形,由矩形的判定定理得出四边形OCED是矩形,则该矩形的对角线相等,即CD=OE=1.
    【详解】
    证明:∵四边形ABCD为菱形,
    ∴AC⊥BD,OA=AC=3,OD=BD=4,
    ∴∠AOD=90°,
    ∴AD==1=CD
    ∵DE∥AC,CE∥BD
    ∴四边形OCED为平行四边形,
    又∵AC⊥BD
    ∴四边形OCED为矩形
    ∴CD=OE=1
    故答案为:1
    本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.
    21、
    【解析】
    由△ADE≌△DCF可导出四边形CEPF对角互补,而CE=CF,于是将△CEP绕C点逆时针旋转90°至△CFG,可得△CPG是等腰直角三角形,从而PG=PF+FG=PF+PE=CP,求出PE和PF的长度即可求出PC的长度.
    【详解】
    解:如图,作CG⊥CP交DF的延长线于G.
    则∠PCF+∠GCF=∠PCG=90°,
    ∵四边形ABCD是边长为2的正方形,
    ∴AD=CD=BC=AB=2,∠ADC=∠DCB=90°,
    ∵E、F分别为CD、BC中点,
    ∴DE=CE=CF=BF=1,
    ∴AE=DF=,
    ∴DP==,
    ∴PE=,PF=,
    在△ADE和△DCF中:
    ∴△ADE≌△DCF(SAS),
    ∴∠AED=∠DFC,
    ∴∠CEP=∠CFG,
    ∵∠ECP+∠PCF=∠DCB=90°,
    ∴∠ECP=∠FCG,
    在△ECP和△FCG中:
    ∴△ECP≌△FCG(ASA),
    ∴CP=CG,EP=FG,
    ∴△PCG为等腰直角三角形,
    ∴PG=PF+FG=PF+PE==CP,
    ∴CP=.
    故答案为:.
    本题考查了正方形的性质,全等三角形的判定与性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
    22、2
    【解析】
    连接EF、AE,证四边形AEFD是平行四边形,注意应用直角三角形斜边上的中线等于斜边的一半和平行四边形的性质:平行四边形的对边相等,求得AE长即可.
    【详解】
    连接EF,AE.
    ∵点E,F分别为BC,AC的中点,
    ∴EF∥AB,EF=AB.
    又∵AD=AB,
    ∴EF=AD.
    又∵EF∥AD,
    ∴四边形AEFD是平行四边形.
    在Rt△ABC中,
    ∵E为BC的中点,BC=4,
    ∴AE=BC=2.
    又∵四边形AEFD是平行四边形,
    ∴DF=AE=2.
    本题主要考查了平行四边形判定,有中点时需考虑运用三角形的中位线定理或则直角三角形斜边上的中线等于斜边的一半.
    23、逆命题“如果,那么x=y”.
    【解析】
    命题“如果x=y,那么x2=y2”的题设是“x=y”,结论是“x2=y2”,
    则逆命题的题设和结论分别为“x2=y2”和“x=y”,
    即逆命题为“如果x2=y2,那么x=y”.
    故答案为如果x2=y2,那么x=y.
    点睛:本题考查逆命题的概念:如果两个命题的题设和结论正好相反,那么这两个命题互为逆命题,如果把其中一个叫原命题,那么另一个叫它的逆命题.
    二、解答题(本大题共3个小题,共30分)
    24、(1),;(2)2;(3).
    【解析】
    (1)把y= x+6和 y= x联立组成方程组,解方程组求得方程组的解,即可得点C的坐标;在直线y= x+6中,令y=0,求得x的值,即可得点A的坐标;(2)用t表示出点P、Q的坐标,求得PQ的长,由条件可知,BO∥QP,若使四边形OBQP为平行四边形,必须满足OB=QP,由此可得,即可求得t值;(3)由题意可知,正方形PQMN与△ACD重叠的图形是矩形,由此求得L与t之间的函数解析式即可.
    【详解】
    (1)C的坐标为( ),A的坐标为(8,0);
    (2)∵点B直线y= x+6与y轴的交点,
    ∴B(0,6),
    ∴OB=6,
    ∵A的坐标为(8,0),
    ∴OA=8,
    由题意可得,OE=8-t,
    ∴P(8-t,),Q(8-t,)
    ∴=10-2t,
    由条件可知,BO∥QP,若使四边形OBQP为平行四边形,必须满足OB=QP,
    所以有 ,解得t=2;
    (3)当0<t<5时, .
    本题是一次函数与结合图形的综合题,根据题意求得QP=10-2t是解决问题的关键.
    25、(1)CD;平行;(2)见解析;(3)平行四边形的对边相等
    【解析】
    (1)CD;平行;
    (2)证明:连接BD.
    在△ABD和△CDB中,
    ∵AB=CD,AD=CB,BD=DB,
    ∴△ABD≌△CDB.
    ∴∠1=∠2,∠3=∠4,
    ∴AB//CD,AD//CB,
    ∴四边形ABCD是平行四边形.
    (3)平行四边形的对边相等
    考点:平行四边形的判定,全等三角形的判定
    26、证明见解析.
    【解析】
    如图,连接DE交AC于N,连接EG交KC于M,连接DF交CH于Q,连接FG交BC于J,连接MN,NQ,QJ,JM,想办法证明四边形MNQJ是平行四边形即可解决问题;
    【详解】
    证明:如图,连接DE交AC于N,连接EG交KC于M,连接DF交CH于Q,连接FG交BC于J,连接MN,NQ,QJ,JM,DG.
    四边形AECD是平行四边形,
    ,同法可证:,
    ,,
    同法可证:,,
    ,,
    四边形MNQJ是平行四边形,
    与MQ互相平分,
    ,,,
    、C、Q共线,
    ,C,K三点共线.
    本题考查平行四边形的性质和判定,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题.
    题号





    总分
    得分
    批阅人
    相关试卷

    2024年湖南省益阳市资阳区国基实验学校数学九年级第一学期开学统考模拟试题【含答案】: 这是一份2024年湖南省益阳市资阳区国基实验学校数学九年级第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省麻城思源实验学校数学九年级第一学期开学统考模拟试题【含答案】: 这是一份2024年湖北省麻城思源实验学校数学九年级第一学期开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省济南外国语学校数学九年级第一学期开学统考模拟试题【含答案】: 这是一份2024-2025学年山东省济南外国语学校数学九年级第一学期开学统考模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map