2024年山东省济南市礼乐初级中学数学九上开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是( )
A.4和7B.5和7C.5和8D.4和17
2、(4分)若一组数据的极差是6,则x的值为( ).
A.7B.8C.9D.7或
3、(4分)如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是( )
A.∠ABD=∠CB.∠ADB=∠ABCC.D.
4、(4分)已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为( )
A.7,6B.7,4C.5,4D.以上都不对
5、(4分)已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据频数分别为2、8、15、5,则第四组数据的频数和频率分别为( )
A.25 ,50%B.20 ,50%C.20 ,40%D.25, 40%
6、(4分)如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线上一点,则点B与其对应点B′间的距离为
A. B.3 C.4 D.5
7、(4分)满足下列条件的三角形中,不是直角三角形的是( )
A.三内角的度数之比为1∶2∶3 B.三内角的度数之比为3∶4∶5
C.三边长之比为3∶4∶5 D.三边长的平方之比为1∶2∶3
8、(4分)计算的结果是( )
A.0B.C.D.1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,先画一个边长为1的正方形,以其对角线为边画第二个正方形,再以第二个正方形的对角线为边画第三个正方形,…,如此反复下去,那么第n个正方形的对角线长为_____.
10、(4分)Rt△ABC与直线l:y=﹣x﹣3同在如图所示的直角坐标系中,∠ABC=90°,AC=2,A(1,0),B(3,0),将△ABC沿x轴向左平移,当点C落在直线l上时,线段AC扫过的面积等于_____.
11、(4分)如果a2-ka+81是完全平方式,则k=________.
12、(4分)如图,一张矩形纸片的长AD=12,宽AB=2,点E在边AD上,点F在边BC上,将四边形ABFE沿直线EF翻折后,点B落在边AD的三等分点G处,则EG的长为_______.
13、(4分)若一次函数y=kx+b,当-3≤x≤1时,对应的y值满足1≤y≤9,则一次函数的解析式为____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)下表是随机抽取的某公司部分员工的月收入资料.
(1)请计算样本的平均数和中位数;
(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;并指出谁的推断比较科学合理,能直实地反映公司全体员工月收入水平。
15、(8分)如图,某校组织学生到地开展社会实践活动,乘车到达地后,发现地恰好在地的正北方向,导航显示车辆应沿北偏东方向行驶10公里到达地,再沿北偏西方向行驶一段距离才能到达地.求、两地间的距离,
16、(8分)如图,为线段上一动点,分别过点作,,连接.已知,设.
(1)用含的代数式表示的值;
(2)探究:当点满足什么条件时,的值最小?最小值是多少?
(3)根据(2)中的结论,请构造图形求代数式的最小值.
17、(10分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.
(1)在图①中,线段AB的长度为 ;若在图中画出以C为直角顶点的Rt△ABC,使点C在格点上,请在图中画出所有点C;
(2)在图②中,以格点为顶点,请先用无刻度的直尺画正方形ABCD,使它的面积为13;再画一条直线PQ(不与正方形对角线重合),使PQ恰好将正方形ABCD的面积二等分(保留作图痕迹).
18、(10分)已知二次函数(,为常数).
(1)当,时,求二次函数的最小值;
(2)当时,若在函数值的情况下,只有一个自变量的值与其对应,求此时二次函数的解析式;
(3)当时,若在自变量的值满足≤≤的情况下,与其对应的函数值的最小值为21,求此时二次函数的解析式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)下列命题:
①矩形的对角线互相平分且相等;
②对角线相等的四边形是矩形;
③菱形的每一条对角线平分一组对角;
④一条对角线平分一组对角的平行四边形是菱形.
其中正确的命题为________(注:把你认为正确的命题序号都填上)
20、(4分)如图,在矩形ABCD中,E是AB边上的中点,将△BCE沿CE翻折得到△FCE,连接AF.若∠EAF=75°,那么∠BCF的度数为__________.
21、(4分)如果一个多边形的每一个外角都等于,则它的内角和是_________.
22、(4分)为了解宿迁市中小学生对春节联欢晚会语言类节目喜爱的程度,这项调查采用__________方式调查较好(填“普查”或“抽样调查”).
23、(4分)如图,在□ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,则S□AEPH=______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,,,,以线段为边向外作等边,点是线段的中点,连结并延长交线段于点.
(1)求证:四边形为平行四边形;
(2)求平行四边形的面积;
(3)如图,分别作射线,,如图中的两个顶点,分别在射线,上滑动,在这个变化的过程中,求出线段的最大长度.
25、(10分)如图,直线与x轴、y轴分别交于点A和点B,点C在线段AB上,点D在y轴的负半轴上,C、D两点到x轴的距离均为1.
(1)点C的坐标为 ,点D的坐标为 ;
(1)点P为线段OA上的一动点,当PC+PD最小时,求点P的坐标.
26、(12分)如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(2,4),B(﹣4,m)两点.
(1)求k1,k2,b的值;
(2)求△AOB的面积;
(3)请直接写出不等式≥k2x+b的解.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分析: 如图:因为平行四边形的对角线互相平分,所, ,在 中任意两边之和大于第三边,任意两边之差小于第三边,将各答案代入验证即可求得.
详解: A、∵ , ∴不可能;
B、∵,∴不可能;
C、∵,∴可能;
D、,∴不可能;
故选C..
点睛: 本题考查平行四边形的性质以及三角形的三边关系定理.熟练掌握平行四边形的性质和三角形三条边的关系式解答本题的关键.
2、D
【解析】
试题分析:根据极差的定义,分两种情况:x为最大值或最小值:
当x为最大值时,;当x是最小值时,.
∴x的值可能7或.
故选D.
考点:1.极差;2.分类思想的应用.
3、C
【解析】
由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.
【详解】
∵∠A是公共角,
∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;
当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;
AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,
故选C.
4、B
【解析】
根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出(-2+b-2+c-2)的值;再由方差为4可得出数据a-2,b-2,c-2的方差.
【详解】
解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,
∴(a-2+b-2+c-2)=3,
∴数据a-2,b-2,c-2的平均数是3;
∵数据a,b,c的方差为4,
∴[(a-5)2+(b-5)2+(c-5)2]=4,
∴a-2,b-2,c-2的方差=[(a-2-3)2+(b-2-3)2+(c--2-3)2]
= [(a-5)2+(b-5)2+(c-5)2]=4,
故选B.
本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.
5、C
【解析】
解:根据样本容量和第一、二、三、五组数据频数可求得第四组的频数为50-2-8-15-5=20,其频率为20÷50=0.4=40%
故选C.
6、C
【解析】
试题分析:如图,连接AA′、BB′,
∵点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,
∴点A′的纵坐标是3。
又∵点A的对应点在直线上一点,∴,解得x=4。
∴点A′的坐标是(4,3)。
∴AA′=4。
∴根据平移的性质知BB′=AA′=4。
故选C。
7、B
【解析】试题解析:A、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形;
B、根据三角形内角和定理可求出三个角分别为45度,60度,75度,所以不是直角三角形;
C、因为32+42=52,符合勾股定理的逆定理,所以是直角三角形;
D、因为1+2=3,所以是直角三角形.
故选B.
8、B
【解析】
分析:首先进行通分,然后根据同分母的分式加减法计算法则即可求出答案.
详解:原式=,故选B.
点睛:本题主要考查的是分式的加减法计算,属于基础题型.学会通分是解决这个问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、()n.
【解析】
第1个正方形的边长是1,对角线长为;第二个正方形的边长为,对角线长为()2=2,第3个正方形的对角线长为()3;得出规律,即可得出结果.
【详解】
第1个正方形的边长是1,对角线长为;
第二个正方形的边长为,对角线长为()2=2
第3个正方形的边长是2,对角线长为2=()3;…,
∴第n个正方形的对角线长为()n;
故答案为()n.
本题主要考查了正方形的性质、勾股定理;求出第一个、第二个、第三个正方形的对角线长,得出规律是解决问题的关键.
10、1
【解析】
根据题意作出图形,利用勾股定理求出BC,求出C’的坐标,再根据矩形的面积公式即可求解.
【详解】
解:∵∠ABC=90°,AC=2,A(1,0),B(3,0),
∴AB=2,
∴BC==4,
∴点C的坐标为(3,4),
当y=4时,4=﹣x﹣3,得x=﹣7,
∴C′(﹣7,4),
∴CC′=10,
∴当点C落在直线l上时,线段AC扫过的面积为:10×4=1,
故答案为:1.
此题主要考查平移的性质,解题的关键是熟知一次函数的图像与性质.
11、±18.
【解析】
利用完全平方公式的结构特征判断即可确定出k的值.
【详解】
∵二次三项式a2-ka+81是完全平方式,
∴k=±18,
故答案为:±18.
此题考查完全平方式,解题关键在于掌握运算法则
12、或
【解析】
如图,作GH⊥BC于H.则四边形ABHG是矩形.G是AD的三等分点,推出AG=4或8,证明EG=FG=FB,设EG=FG=FB=x,分两种情形构建方程即可解决问题.
【详解】
解:如图,作GH⊥BC于H.则四边形ABHG是矩形.
∵G是AD的三等分点,
∴AG=4或8,
由翻折可知:FG=FB,∠EFB=∠EFG,设FG=FB=x.
∵AD∥BC,
∴∠FEG=∠EFB=∠GFE,
∴EG=FG=x,
在Rt△FGH中,∵FG2=GH2+FH2,
∴x2=22+(4-x)2或x2=22+(8-x)2
解得:x=或,
故答案为或.
本题考查翻折变换,矩形的性质,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
13、y=2x+7或y=-2x+1
【解析】
解:分两种情况讨论:
(1)当k>0时, ,解得:,此时y=2x+7;
(2)当k<0时, ,解得:,此时y=-2x+1.
综上所述:所求的函数解析式为:y=2x+7或y=-2x+1.
点睛:本题主要考查待定系数法求一次函数的解析式的知识,解答本题的关键是熟练掌握一次函数的性质:在定义域上是单调函数,本题难度不大.
三、解答题(本大题共5个小题,共48分)
14、(1)平均数:6150元;中位数:3200元;(2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.
【解析】
(1)要求平均数只要求出各个数据之和再除以数据个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;
(2)甲从员工平均工资水平的角度推断公司员工月收入,乙从员工中间工资水平的角度推断公司员工的收入,乙推断比较科学合理.
【详解】
解:(1)样本的平均数为:
=6150元;
这组数据共有26个,第13、14个数据分别是3000、3400,
所以样本的中位数为:3200元;
(2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.
故答案为:(1)平均数:6150元;中位数:3200元;(2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.
本题考查计算平均数和中位数,并用中位数和平均数说明具体问题.
15、公里
【解析】
先过点C向AB作垂线,构造直角三角形,利用60°和45°特殊角,表示出相关线段,利用已知CB长度为10公里,建立方程,解出这些相关线段,从而求得A、C两地的距离.
【详解】
解:如图,过点作于点,
则,,,
在中,
,
,
,
,
由勾股定理可得:,
在中,
,
、两地间的距离为公里.
本题主要考查了勾股定理应用题,正确构造直角三角形,然后利用特殊角表示相关线段,从而求解是解题关键.
16、(1);(2)三点共线时;(3)2
【解析】
试题分析:(1)由于△ABC和△CDE都是直角三角形,故可由勾股定理表示;
(2)若点C不在AE的连线上,根据三角形中任意两边之和大于第三边知,AC+CE>AE,故当A、C、E三点共线时,AC+CE的值最小;
(3)由(1)(2)的结果可作BD=1,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,则AE的长即为代数式的最小值,然后构造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值.
(1);
(2)当三点共线时,的值最小.
(3)如下图所示,作,过点作,过点作,使,.连结交于点,的长即为代数式的最小值.
过点作交的延长线于点,得矩形,
则,1.
所以,即的最小值为2.
考点:本题考查的是轴对称-最短路线问题
点评:本题利用了数形结合的思想,求形如的式子的最小值,可通过构造直角三角形,利用勾股定理求解.
17、(1),答案见解析;(2)答案见解析.
【解析】
(1)直接利用勾股定理以及勾股定理的逆定理进而分析得出答案;
(2)直接利用网格结合正方形的性质分析得出答案.
【详解】
解:(1)线段AB的长度为:;
点C共6个,如图所示:
(2)如图所示:直线PQ只要过AC、BD交点O,且不与AC,BD重合即可.
此题主要考查了应用设计与作图以及勾股定理,正确应用正方形的性质是解题关键.
18、(1)二次函数取得最小值-1;(2)或;
(3)或.
【解析】
(1)当b=2,c=-3时,二次函数的解析式为,把这个解析式化为顶点式利用二次函数的性质即可求最小值.
(2)当c=5时,二次函数的解析式为,又因函数值y=1的情况下,只有一个自变量x的值与其对应,说明方程有两个相等的实数根,利用即可解得b值,从而求得函数解析式.
(3)当c=b2时,二次函数的解析式为,它的图象是开口向上,对称轴为的抛物线.分三种情况进行讨论,①对称轴位于b≤x≤b+3范围的左侧时,即<b;②对称轴位于b≤x≤b+3这个范围时,即b≤≤b+3;③对称轴位于b≤x≤b+3范围的右侧时,即>b+3,根据列出的不等式求得b的取值范围,再根据x的取值范围b≤x≤b+3、函数的增减性及对应的函数值y的最小值为21可列方程求b的值(不合题意的舍去),求得b的值代入也就求得了函数的表达式.
【详解】
解:(1)当b=2,c=-3时,二次函数的解析式为,即.
∴当x=-1时,二次函数取得最小值-1.
(2)当c=5时,二次函数的解析式为.
由题意得,方程有两个相等的实数根.
有,解得,
∴此时二次函数的解析式为或.
(3)当c=b2时,二次函数的解析式为.
它的图象是开口向上,对称轴为的抛物线.
①若<b时,即b>0,
在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y随x的增大而增大,
故当x=b时,为最小值.
∴,解得,(舍去).
②若b≤≤b+3,即-2≤b≤0,
当x=时,为最小值.
∴,解得(舍去),(舍去).
③若>b+3,即b<-2,
在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y随x的增大而减小,
故当x=b+3时,为最小值.
∴,即
解得(舍去),.
综上所述,或b=-1.
∴此时二次函数的解析式为或.
考点:二次函数的综合题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、①③④
【解析】
根据正方形、平行四边形、菱形和矩形的判定,对选项一一分析,选择正确答案.
【详解】
①矩形的对角线互相平分且相等,故正确;
②对角线相等的平行四边形是矩形,故错误;
③菱形的每一条对角线平分一组对角,这是菱形的一条重要性质,故正确;
④一条对角线平分一组对角的平行四边形是菱形,故正确.
故答案为①③④.
考查了正方形、平行四边形、菱形和矩形的判定方法.解答此题的关键是熟练掌握运用这些判定.
20、30°
【解析】
解:∵四边形ABCD是矩形,
∴∠B=90°,
∵E为边AB的中点,
∴AE=BE,
由折叠的性质可得:∠EFC=∠B=90°,∠FEC=∠CEB,∠FCE=∠BCE,FE=BE,
∴AE=FE,
∴∠EFA=∠EAF=75°,
∴∠BEF=∠EAF+∠EFA=150°,
∴∠CEB=∠FEC=75°,
∴∠FCE=∠BCE=90°-75°=15°,
∴∠BCF=30°,
故答案为30°.
本题考查了翻折变换的性质、矩形的性质、等腰三角形的性质、直角三角形的性质以及三角形的外角性质;熟练掌握翻折变换和矩形的性质是解决问题的关键.
21、
【解析】
根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n-2)•180°,代入公式就可以求出内角和.
【详解】
解:多边形边数为:360°÷30°=12,
则这个多边形是十二边形;
则它的内角和是:(12-2)•180°=1°.
故答案为:1.
本题考查多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.
22、抽样调查
【解析】
分析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
详解:为了解宿迁市中小学生对中华古诗词喜爱的程度,因为人员多、所费人力、物力和时间较多,所以适合采用的调查方式是抽样调查.
故答案为抽样调查.
点睛:本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
23、1
【解析】
由条件可证明四边形HPFD、BEPG为平行四边形,可证明S四边形AEPH=S四边形PFCG.,再利用面积的和差可得出四边形AEPH和四边形PFCG的面积相等,由已知条件即可得出答案.
【详解】
解:∵EF∥BC,GH∥AB,
∴四边形HPFD、BEPG、AEPH、CFPG为平行四边形,
∴S△PEB=S△BGP,
同理可得S△PHD=S△DFP,S△ABD=S△CDB,
∴S△ABD-S△PEB-S△PHD=S△CDB-S△BGP-S△DFP,
即S四边形AEPH=S四边形PFCG.
∵CG=2BG,S△BPG=1,
∴S四边形AEPH=S四边形PFCG=1×1=1;
故答案为:1.
本题主要考查平行四边形的判定和性质,掌握平行四边形的判定和性质是解题的关键,即①两组对边分别平行⇔四边形为平行四边形,②两组对边分别相等⇔四边形为平行四边形,③一组对边平行且相等⇔四边形为平行四边形,④两组对角分别相等⇔四边形为平行四边形,⑤对角线互相平分⇔四边形为平行四边形.
二、解答题(本大题共3个小题,共30分)
24、 (1)证明见解析;(2);(3).
【解析】
(1)在Rt△ABC中,E为AB的中点,则CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD是平行四边形;
(2)在Rt△ABC中,求出BC,AC即可解决问题;
(3)取的中点,连结,,,根据三角形三边关系进行求解即可得.
【详解】
(1)在中,,,,
在等边中,,,
为的中点,,
又,
,
在中,,为的中点,,,
,,,
又,,
又,,
,
又,,即,
四边形是平行四边形;
(2)在中,,,
,
∴,
;
(3)取的中点,连结,,
,
的最大长度.
本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题.
25、(1)(-3,1);(0,-1)
(1)P(,0)
【解析】
(1)根据直线与C、D两点到x轴的距离均为1即可求出C,D的坐标;(1)连接CD,求出直线CD与x轴的交点即为P点.
【详解】
(1)令y=1,解得x=-3,∴点C的坐标为(-3,1)
令y=-1,解得x=0,∴点D的坐标为(0,-1)
(1)如图,连接CD,求出直线CD与x轴的交点即为P点.
设直线CD的解析式为y=kx+b,
把(-3,1),(0,1)代入得
解得
∴y=x-1
令y=0,解得x=
∴P(,0)
此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法确定函数关系式.
26、(1)k1=8,k1=1,b=1;(1)2;(3)x≤﹣4或0<x≤1.
【解析】
(1)由点A的坐标利用反比例函数图象上点的坐标特征,即可得出反比例函数解析式,再结合点B的横坐标即可得出点B的坐标,根据点A、B的坐标利用待定系数法,即可求出一次函数解析式;
(1)根据一次函数图象上点的坐标特征,即可求出一次函数图象与y轴的交点坐标,再利用分割图形法即可求出△AOB的面积;
(3)根据两函数图象的上下位置关系,即可得出不等式的解集.
【详解】
(1)∵反比例函数y=与一次函数y=k1x+b的图象交于点A(1,4),B(﹣4,m),
∴k1=1×4=8,m==﹣1,
∴点B的坐标为(﹣4,﹣1).
将A(1,4)、B(﹣4,﹣1)代入y1=k1x+b中,,
解得:,
∴k1=8,k1=1,b=1.
(1)当x=0时,y1=x+1=1,
∴直线AB与y轴的交点坐标为(0,1),
∴S△AOB=×1×4+×1×1=2.
(3)观察函数图象可知:
不等式≥k1x+b的解集为x≤﹣4或0<x≤1.
本题考查了反比例函数与一次函数的交点问题,解题的关键是:(1)根据待定系数法求出函数解析式;(1)利用分割图形法求出△AOB的面积;(3)根据两函数图象的上下位置关系找出不等式的解集.
题号
一
二
三
四
五
总分
得分
2024年潮安龙湖中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024年潮安龙湖中学数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年北京市丰台区十八中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024年北京市丰台区十八中学数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年浙江省台州市书生中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024-2025学年浙江省台州市书生中学数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。