终身会员
搜索
    上传资料 赚现金

    2024年山东省济宁市济宁院附属中学数学九上开学学业质量监测模拟试题【含答案】

    立即下载
    加入资料篮
    2024年山东省济宁市济宁院附属中学数学九上开学学业质量监测模拟试题【含答案】第1页
    2024年山东省济宁市济宁院附属中学数学九上开学学业质量监测模拟试题【含答案】第2页
    2024年山东省济宁市济宁院附属中学数学九上开学学业质量监测模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年山东省济宁市济宁院附属中学数学九上开学学业质量监测模拟试题【含答案】

    展开

    这是一份2024年山东省济宁市济宁院附属中学数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在下列性质中,平行四边形不一定具有的是( )
    A.对边相等B.对边平行C.对角互补D.内角和为360°
    2、(4分)六边形的内角和为( )
    A.720°B.360°C.540°D.180°
    3、(4分)如图,是某市6月份日平均气温情况,在日平均气温这组数据中,众数和中位数分别是( )
    A.21,22B.21,21.5C.10,21D.10,22
    4、(4分)已知函数y=,则自变量x的取值范围是( )
    A.﹣1<x<1B.x≥﹣1且x≠1C.x≥﹣1D.x≠1
    5、(4分)如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为( )
    A.6B.8C.12D.10
    6、(4分)如果三条线段的长a,b,c满足a2=c2-b2,则这三条线段组成的三角形是( )
    A.锐角三角形B.直角三角形C.钝角三角形D.无法确定
    7、(4分)如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )
    A.16B.12C.24D.18
    8、(4分)已知关于x的不等式组的整数解共有2个,则整数a的取值是( )
    A.﹣2B.﹣1C.0D.1
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若次函数y=(a﹣1)x+a﹣8的图象经过第一,三,四象限,且关于y的分式方程 有整数解,则满足条件的整数a的值之和为_____.
    10、(4分)二次三项式是完全平方式,则的值是__________.
    11、(4分)如图,在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于D,若AB=10,则△BDE的周长等于_.
    12、(4分)化简3﹣2=_____.
    13、(4分)如图,正方形 ABCD 的顶点 C, A 分别在 x 轴, y 轴上, BC 是菱形 BDCE 的对角线.若 BC  6, BD  5, 则点 D 的坐标是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,⊙O为ABC的外接圆,D为OC与AB的交点,E为线段OC延长线上一点,且EACABC.
    (1)求证:直线AE是⊙O的切线;
    (2)若D为AB的中点,CD3,AB8.
    ①求⊙O的半径;②求ABC的内心I到点O的距离.
    15、(8分)如图,每个小正方形的边长均为1,求证:△ABC是直角三角形.
    16、(8分)如图,矩形 ABCD 中,AB  4, BC  10, E 在 AD 上,连接 BE, CE, 过点 A 作 AG // CE ,分别交 BC, BE 于点 G, F , 连接 DG 交 CE 于点 H .若 AE  2, 求证:四边形 EFGH 是矩形.
    17、(10分)计算:(1)
    (2)已知,,求的值.
    18、(10分)已知:如图,四边形ABCD是平行四边形,CE∥BD交AD的延长线于点E,CE=AC.
    (1)求证:四边形ABCD是矩形;
    (2)若AB=4,AD=3,求四边形BCED的周长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)方程x4-8=0的根是______
    20、(4分)如图是我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形拼成的大正方形.如果图中大、小正方形的面积分别为52和4,直角三角形两条直角边分别为x,y,那么=_____.
    21、(4分)函数的图象位于第________象限.
    22、(4分)已知函数y=(k-1)x|k|是正比例函数,则k=________
    23、(4分)如图,直线y1=-x+a与直线y2=bx-4相交于点P(1,-3),则不等式-x+a≥bx-4的解集是___________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在BC边所在直线上, PE=PB.
    (1)如图1,当点E在线段BC上时,
    求证:①PE=PD,②PE⊥PD.
    简析: 由正方形的性质,图1中有三对全等的三角形,
    即△ABC≌△ADC,_______≌_______,和_______≌______,由全等三角形性质,结合条件中PE=PB,易证PE=PD.要证PE⊥PD,考虑到∠ECD = 90°,故在四边形PECD中,只需证∠PDC +∠PEC=______即可.再结合全等三角形和等腰三角形PBE的性质,结论可证.
    (2)如图2,当点E在线段BC的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;
    (3)若AB=1,当△PBE是等边三角形时,请直接写出PB的长.
    25、(10分)取一张长与宽之比为的长方形纸板,剪去四个边长为的小正方形(如图),并用它做一个无盖的长方体形状的包装盒,要使包装盒的容积为(纸板的厚度略去不计),这张长方形纸板的长与宽分别为多少厘米?
    26、(12分)(1)用配方法解方程:;
    (2)用公式法解方程:.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    A、平行四边形的对边相等,故本选项正确;
    B、平行四边形的对边平行,故本选项正确;
    C、平行四边形的对角相等不一定互补,故本选项错误;
    D、平行四边形的内角和为360°,故本选项正确;故选C
    2、A
    【解析】
    根据多边形内角和公式 ,即可求出.
    【详解】
    根据多边形内角和公式,六边形内角和
    故选A.
    本题考查多边形内角和问题,熟练掌握公式是解题关键.
    3、A
    【解析】
    根据众数和中位数的定义求解.
    【详解】
    解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是1,所以中位数是1.
    故选A.
    本题考查众数的定义:一组数据中出现次数最多的数据叫做众数.也考查了条形统计图和中位数.
    4、B
    【解析】
    根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.
    【详解】
    解:根据题意得:,
    解得:x≥-1且x≠1.
    故选B.
    点睛:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数为非负数.
    5、D
    【解析】
    要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.
    【详解】
    解:如图,连接BM,
    ∵点B和点D关于直线AC对称,
    ∴NB=ND,
    则BM就是DN+MN的最小值,
    ∵正方形ABCD的边长是8,DM=2,
    ∴CM=6,
    ∴BM==1,
    ∴DN+MN的最小值是1.
    故选:D.
    此题考查正方形的性质和轴对称及勾股定理等知识的综合应用,解题的难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.
    6、B
    【解析】
    根据“勾股定理的逆定理”结合已知条件分析判断即可.
    【详解】
    解:∵三条线段的长a,b,c满足a2=c2-b2,
    ∴a2+b2=c2,
    ∴这三条线段组成的三角形是直角三角形
    故选B.
    本题考查熟知“若三角形的三边长分别为a、b、c,且满足a2+b2=c2,则该三角形是以c为斜边的直角三角形”是解答本题的关键.
    7、A
    【解析】
    由菱形ABCD,∠B=60°,易证得△ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF的周长.
    【详解】
    解:∵四边形ABCD是菱形,∴AB=BC.
    ∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=BC=4,∴以AC为边长的正方形ACEF的周长为:4AC=1.
    故选A.
    本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
    8、C
    【解析】
    分析:先用a表示出不等式组的整数解,再根据不等式组的整数解有2个可得出a的取值范围.
    解:,由①得,x≥a,由②得,x≤1,故不等式组的解集为:a≤x≤1,
    ∵不等式的整数解有2个,
    ∴其整数解为:1,1,
    ∵a为整数,
    ∴a=1.
    故选C.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据题意得到关于的不等式组,解之得到的取值范围,解分式方程根据“该方程有整数解,且”,得到的取值范围,结合为整数,取所有符合题意的整数,即可得到答案.
    【详解】
    解:函数的图象经过第一,三,四象限,
    解得:,
    方程两边同时乘以得:,
    去括号得:,
    移项得:,
    合并同类项得:,
    系数化为1得:,
    该方程有整数解,且,
    是2的整数倍,且,
    即是2的整数倍,且,

    整数为:2,6,

    故答案为1.
    本题考查了分式方程的解和一元一次不等式组的整数解,正确掌握解分式方程的方法和解一元一次不等式组的方法是解题的关键.
    10、17或-7
    【解析】
    利用完全平方公式的结构特征判断即可确定出k的值.
    【详解】
    解:∵二次三项式4x2-(k-5)x+9是完全平方式,
    ∴k-5=±12,
    解得:k=17或k=-7,
    故答案为:17或-7
    此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
    11、1
    【解析】
    由题中条件可得Rt△ACD≌Rt△AED,进而得出AC=AE,然后把△BDE的边长通过等量转化即可得出结论.
    【详解】
    解:∵AD平分∠CAB,AC⊥BC于点C,DE⊥AB于E,
    ∴CD=DE.
    又∵AD=AD,
    ∴Rt△ACD≌Rt△AED,
    ∴AC=AE.
    又∵AC=BC,
    ∴BC=AE,
    ∴△DBE的周长为:DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=1.
    故答案为:1.
    本题主要考查了角平分线的性质以及全等三角形的判定及性质,能够掌握并熟练运用.
    12、
    【解析】
    直接合并同类二次根式即可.
    【详解】
    原式=(3﹣2)=.
    故答案为.
    本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.
    13、.
    【解析】
    过点作于点,根据四边形是菱形可知,可得出是等腰三角形,即可得到,再根据勾股定理求出即可得出结论.
    【详解】
    过点作于点,
    四边形是菱形,

    是等腰三角形,
    点是的中点,


    四边形是正方形,
    =6,
    6+4=10,
    .
    故答案为:.
    本题考查的是正方形的性质,根据题意作出辅助线,利用菱形的性质判断出是等腰三角形是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)①⊙O的半径;②ABC的内心I到点O的距离为.
    【解析】
    (1)连接AO,证得EACABC=,,则EAO=EAC+CAO=,从而得证;
    (2)①设⊙O的半径为r,则OD=r-3,在△AOD中,根据勾股定理即可得出②作出ABC的内心I,过I作AC,BC的垂线,垂足分别为F,G.设内心I到各边的距离为a,由面积法列出方程求解可得答案.
    【详解】
    (1)如图,连接AO
    则EACABC=.
    又∵AO=BO,
    ∴ACO=CAO=
    ∴EAO=EAC+CAO=AOC +=
    ∴EA⊥AO
    ∴直线AE是⊙O的切线;
    (2)①设⊙O的半径为r,则OD=r-3,
    ∵D为AB的中点,
    ∴OC⊥AB,ADO=,AD=4
    ∴,即
    解得
    ②如下图,
    ∵D为AB的中点,

    且CO是的平分线,则内心I在CO上,连接AI,BI,过I作AC,BC的垂线,垂足分别为F,G.
    易知DI=FI=GI,设其长为a.由面积可知:

    解得

    ∴ABC的内心I到点O的距离为
    本题考查了圆的切线的判定,垂径定理,圆周角定理等知识,是中考常见题.
    15、答案见详解.
    【解析】
    根据勾股定理计算出、、,再根据勾股定理逆定理可得是直角三角形.
    【详解】
    证明:,,,

    是直角三角形.
    此题主要考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长,,满足,那么这个三角形就是直角三角形.
    16、证明见解析.
    【解析】
    根据四边形是矩形以及,得到四边形是平行四边形,从而得到四边形是平行四边形,即可得到四边形是平行四边形,再根据勾股定理求出,长,由勾股定理的逆定理得到是直角三角形,即可得正.
    【详解】
    四边形是矩形,
    ,,

    四边形是平行四边形,


    四边形是平行四边形,

    四边形是平行四边形,
    ,,
    ,,

    是直角三角形,

    四边形是矩形.
    本题考查了矩形的判定与性质、平行四边形的判定与性质、勾股定理以及勾股定理的逆定理的运用,解题的关键是掌握这些性质.
    17、(1);(2)8.
    【解析】
    (1)根据二次根式的乘除法和加减法可以解答本题;
    (2)根据、的值即可求得所求式子的值.
    【详解】
    (1)解:原式

    (2)解:原式
    .
    本题考查了二次根式的化简求值,分母有理化,解答本题的关键是明确二次根式化简求值的方法.
    18、(1)详见解析;(2)1.
    【解析】
    (1)根据已知条件推知四边形BCED是平行四边形,则对边相等:CE=BD,依据等量代换得到对角线AC=BD,则平行四边形ABCD是矩形;
    (2)通过勾股定理求得BD的长度,再利用四边形BCED是平行四边形列式计算即可得解.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴AE∥BC.
    ∵CE∥BD,
    ∴四边形BCED是平行四边形.
    ∴CE=BD.
    ∵CE=AC,
    ∴AC=BD.
    ∴□ABCD是矩形.
    (2)解:∵□ABCD是矩形,AB=4,AD=3,
    ∴∠DAB=90°,BC=AD=3,
    ∴.
    ∵四边形BCED是平行四边形,
    ∴四边形BCED的周长为2(BC+BD)=2×(3+5)=1.
    故答案为(1)详见解析;(2)1.
    本题考查矩形的判定,平行四边形的判定与性质,勾股定理,熟记性质是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、±2
    【解析】
    因为(±2)4=16,所以16的四次方根是±2.
    【详解】
    解:∵x4-8=0,∴x4=16,
    ∵(±2)4=16,∴x=±2.
    故答案为:±2.
    本题考查的是四次方根的概念,解答此类题目时要注意一个正数的偶次方根有两个,这两个数互为相反数.
    20、1
    【解析】
    根据题意,结合图形求出xy与的值,原式利用完全平方公式展开后,代入计算即可求出其值.
    【详解】
    解:根据勾股定理可得=52,
    四个直角三角形的面积之和是:×4=52-4=48,
    即2xy=48,
    ∴==52+48=1.
    故答案是:1.
    本题主要考查了勾股定理,以及完全平方公式的应用,根据图形的面积关系,求得和xy的值是解题的关键.
    21、二、四
    【解析】
    根据反比例函数的性质:y=,k>0时,图象位于一三象限,k<0时,图象位于二、四象限,可得答案.
    【详解】
    解:反比例函数y=-的k=-6<0,
    ∴反比例函数y=-的图象位于第二、四象限,
    故答案为二、四.
    本题考查反比例函数的性质,解题关键是利用y=,k>0时,图象位于一三象限,k<0时,图象位于二、四象限判断.
    22、-1
    【解析】
    试题解析:∵根据正比例函数的定义,
    可得:k-1≠0,|k|=1,
    ∴k=-1.
    23、x≤1.
    【解析】
    观察函数图象得到当x<1时,函数y=-x+a的图象都在y=bx-4的图象上方,所以不等式-x+a≥bx-4的解集为x≤1.
    【详解】
    如图,
    当x<1时,函数y=-x+a的图象都在y=bx-4的图象上方,所以不等式-x+a≥bx-4的解集为x≤1;
    故答案为x≤1.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)△PAB;△PAD;△PBC;△PDC,180°;(2)成立,证明见解析;(3)或.
    【解析】
    (1)根据题意推导即可得出结论.
    (2)求证PE⊥PB ,PE=PB,由AC为对角线以及已知条件可先证明△PDC≌△PBC,得PD=PB, PB=PE,PE=PD.由△PDC≌△PBC可得出∠PDC=∠PBC,最后得出∠EPD=∠FCE=90°,即PE⊥PB.
    (3) 分两种情况讨论当点P在线段AC的反向延长线上时,当点P在线段AC的延长线上时.
    【详解】
    (1) 由正方形的性质,图1中有三对全等的三角形,
    即△ABC≌△ADC,△PAB≌△PAD,和△PBC≌△PDC,由全等三角形性质,结合条件中PE=PB,易证PE=PD.要证PE⊥PD,考虑到∠ECD = 90°,故在四边形PECD中,只需证∠PDC +∠PEC=180°即可.再结合全等三角形和等腰三角形PBE的性质,结论可证.
    (2)(1)中的结论成立.
    ①∵四边形ABCD是正方形,AC为对角线,
    ∴CD=CB,∠ACD=∠ACB,又 ∵PC=PC,
    ∴△PDC≌△PBC.
    ∴PD=PB.
    ∵PB=PE,
    ∴PE=PD.
    ②由①得△PDC≌△PBC.
    ∴∠PDC=∠PBC.
    又∵PE=PB,
    ∴∠PBE=∠PEB.
    ∴∠PDC=∠PEB
    如图,记DC与PE的交点为F,则∠PFD=∠CFE.
    ∴∠EPD=∠FCE=90°.
    ∴PE⊥PB.
    (3) 如图,当点P在线段AC上时,过点P作PH⊥BC,垂足为H.设PB=x,则

    ∴,解得,
    当点P在线段AC的反向延长线上时,同理可得;
    当点P在线段AC的延长线上时,△PBE是等边三角形不成立.
    综上,x=或.
    此题考查正方形的性质,全等三角形判定与性质,解题关键在于证明全等三角形得出结论进行推导.
    25、长为30厘米,宽为12厘米
    【解析】
    设该长方形纸板的长为,宽为,根据题意列出一元二次方程即可进行求解.
    【详解】
    解:设该长方形纸板的长为,宽为,
    根据题意得:,即,
    解得:,(不合题意舍去),
    ∴,.
    答:这张长方形纸板的长为30厘米,宽为12厘米
    此题主要考查一元二次方程的应用,解题的关键是根据题意列出方程进行求解.
    26、(1);;(2);
    【解析】
    (1)先把左边的4移项到右边成-4,再配方,两边同时加32,左边得到完全平方,再得出两个一元一次方程进行解答;
    (2)先化成一元二次方程的一般式,得出a、b、c,计算b2-4ac判定根的情况,最后运用求根公式即可求解.
    【详解】
    解:(1)x2+6x+4=0
    x2+6x=-4
    x2+6x+9=-4+9
    (x+3)2=5

    (2)5x2-3x=x+1,
    5x2-4x-1=0,
    b2-4ac=(-4)2-4×5×(-1)=36,

    本题主要考查了运用配方法、公式法解一元二次方程,运用公式法解方程时,要先把方程化为一般式,找到a、b、c的值,然后用b2-4ac判定根的情况,最后运用公式即可求解.
    题号





    总分
    得分

    相关试卷

    2024年山东省济宁市邹城市九级九年级数学第一学期开学学业质量监测模拟试题【含答案】:

    这是一份2024年山东省济宁市邹城市九级九年级数学第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山东省济宁市汶上县九上数学开学学业质量监测模拟试题【含答案】:

    这是一份2024年山东省济宁市汶上县九上数学开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年北京市北京师范大附属实验中学数学九上开学学业质量监测模拟试题【含答案】:

    这是一份2024年北京市北京师范大附属实验中学数学九上开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map