2024年山东省聊城市名校九年级数学第一学期开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)交警在一个路口统计的某个时段来往车辆的分布如条形图所示.请找出这些车辆速度的众数、中位数分别是( )
A.52,53B.52,52C.53,52D.52, 51
2、(4分)下列长度的三条线段能组成直角三角形的是
A.3, 4,5B.2,3,4C.4,6,7D.5,11,12
3、(4分)已知□ABCD的周长为32,AB=4,则BC的长为( )
A.4B.12C.24D.28
4、(4分)下列因式分解正确的是( )
A.x3﹣x=x(x2﹣1)B.x2+y2=(x+y)(x﹣y)
C.(a+4)(a﹣4)=a2﹣16D.m2+4m+4=(m+2)2
5、(4分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:
该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )
A.平均数B.方差C.中位数D.众数
6、(4分)正比例函数y=3x的大致图像是( )
A.B.C.D.
7、(4分)下列计算正确的是( )
A.+=B.÷=
C.2×3=6D.﹣2=﹣
8、(4分)化简的结果是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为_____.
10、(4分)如果点A(1,n)在一次函数y=3x﹣2的图象上,那么n=_____.
11、(4分)若是方程的解,则代数式的值为____________.
12、(4分)已知一组数据x1,x2,x3,x4的平均数是5,则数据x1+3,x2+3,x3+3,x4+3的平均数是____.
13、(4分)直线y=3x+2沿y轴向下平移4个单位,则平移后直线与y轴的交点坐标为_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知A.B两地果园分别有苹果30吨和40吨,C.D两地的农贸市场分别需求苹果20吨和50吨。已知从A.B两地到C.D两地的运价如表:
(1)填空:若从A果园运到C地的苹果为10吨,则从A果园运到D地的苹果为___吨,从B果园运到C地的苹果为___吨,从B果园运到D地的苹果为___吨,总运输费为___元;
(2)如果总运输费为750元时,那么从A果园运到C地的苹果为多少吨?
15、(8分)如图,城气象台测得台风中心在城正西方向的处,以每小时的速度向南偏东的方向移动,距台风中心的范围内是受台风影响的区域.
(1)求城与台风中心之间的最小距离;(2)求城受台风影响的时间有多长?
16、(8分)为了解某校八年级150名女生的身高情况,从中随机抽取10名女生,测得身高并绘制如下条形统计图.
(1)求出这10名女生的身高的中位数和众数;
(2)依据样本估计该校八年级全体女生的平均身高;
(3)请你根据这个样本,在该校八年级中,设计一个挑选50名女生组成方队的方案(要求选中女生的身高尽可能接近).
17、(10分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
18、(10分)州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)
请根据图中提供的信息,回答下列问题:
(1)a= ,并写出该扇形所对圆心角的度数为 ,请补全条形图.
(2)在这次抽样调查中,众数和中位数分别是多少?
(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)为了解一批灯管的使用寿命,适合采用的调查方式是_____(填“普查”或“抽样调查”)
20、(4分)某市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物指数如表,则该周PM2.5指数的众数和中位数分别是________
21、(4分)当___________________时,关于的分式方程无解
22、(4分)因式分解:______ .
23、(4分)已知直线过点和点,那么关于的方程的解是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A,
(1)求点A的坐标;
(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求△OBC的面积.
25、(10分)化简求值:已知,求的值.
26、(12分)按要求作答
(1)解方程;(2)计算.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据众数、中位数的意义,分别求出众数、中位数,再做出选择即可.
【详解】
车速出现次数最多的是52千米/时,因此车速的众数是52,
一共调查27辆车,将车速从小到大排列后,处在中间的一个数是52,因此中位数是52,
故选:B.
本题考查中位数、众数的意义和计算方法,掌握中位数、众数的计算方法是得出答案的前提.
2、A
【解析】
利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.
【详解】
A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;
B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;
C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;
D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;
故选A.
考查勾股定理的逆定理,如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.
3、B
【解析】
根据平行四边形的性质得AB=CD,AD=BC,根据2(AB+BC)=32即可求解
【详解】
∵四边形ABCD是平行四边形
∴AB=CD,AD=BC
∵平行四边形ABCD的周长是32
∴2(AB+BC)=32
∴BC=12
故正确答案为B
此题主要考查平行四边形的性质
4、D
【解析】
逐项分解因式,即可作出判断.
【详解】
A、原式=x(x2﹣1)=x(x+1)(x﹣1),不符合题意;
B、原式不能分解,不符合题意;
C、原式不是分解因式,不符合题意;
D、原式=(m+2)2,符合题意,
故选:D.
此题主要考查了提公因式法,以及公式法在因式分解中的应用,要熟练掌握.
5、D
【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.
【详解】
由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.
故选D.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
6、B
【解析】
∵3>0,
∴图像经过一、三象限.
故选B.
点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时, y=kx的图象经过一、三象限;当k<0时, y=kx的图象经过二、四象限.
7、D
【解析】
直接利用二次根式混合运算法则计算得出答案.
【详解】
解:A、+,无法计算,故此选项错误;
B、÷=,故此选项错误;
C、2×3=18,故此选项错误;
D、﹣2=﹣,正确.
故选D.
此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.
8、C
【解析】
根据二次根式的性质进行化简即可.
【详解】
∵a≥1,
∴原式=.
故选C.
本题主要考查二次根式的性质、化简,关键在于根据已知推出a≥1.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
先由含30°角的直角三角形的性质,得出BC,再由三角形的中位线定理得出DE即可.
【详解】
因为,△ABC中,∠C=90°,∠A=30°,
所以, ,
因为,DE是中位线,
所以,.
故答案为2
本题考核知识点:直角三角形,三角形中位线. 解题关键点:熟记直角三角形性质,三角形中位线性质.
10、1
【解析】
把点A的坐标代入一次函数y=3x﹣2解析式中,即可求出n的值.
【详解】
∵点A(1,n)在一次函数y=3x﹣2的图象上,
∴n=3×1﹣2=1.
故答案为:1.
本题考查了点在一次函数图象上的条件,即点的坐标满足一次函数解析式,正确计算是解题的关键.
11、1
【解析】
根据一元二次方程的解的定义,将x=a代入已知方程,即可求得a2-2a=1,然后将其代入所求的代数式并求值即可.
【详解】
解:∵a是方程x2-2x-1=0的一个解,
∴a2-2a=1,
则2a2-4a+2019=2(a2-2a)+2019=2×1+2019=1;
故答案为:1.
本题考查的是一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了代数式求值.
12、8
【解析】
根据平均数的性质知,要求x1+3,x2+3,x3+3,x4+3的平均数, 只要把数x1,x2,x3,x4的和表示出即可.
【详解】
解:x1,x2,x3,x4的平均数为5
x1+x2+x3+x4=45=20,
x1+3,x2+3,x3+3,x4+3的平均数为:
=( x1+3+ x2+3+ x3+3+ x3+3)4
=(20+12) 4
=8,
故答案为:8.
本题主要考查算术平均数的计算.
13、(0,-2)
【解析】
y=3x+2沿y轴向下平移4个单位y=3x+2-4=3x-2,
令x=0,y=-2, 所以(0,-2).
故交点坐标(0,-2).
三、解答题(本大题共5个小题,共48分)
14、(1)20,10,30,760;(2)从A果园运到C地的苹果数为5吨
【解析】
(1)A地果园有苹果30吨,运到C地的苹果为10吨,则从A果园运到D地的苹果为30-10吨,从B果园运到C地的苹果为20-10吨,从B果园运到D地的苹果为50-20吨,然后计算运输费用;
(2)表示出从A到C、D两地,从B到C、D两地的吨数,乘以运价就是总费用;根据总运输费为750元列出方程,求值即可.
【详解】
(1)从A果园运到D地的苹果为30−10=20(吨),
从B果园运到C地的苹果为20−10=10(吨),
从B果园运到D地的苹果为50−20=30(吨),
总费用为:10×15+20×12+10×10+30×9=760(元),
故答案为:20,10,30,760;
(2)设从A果园运到C地的苹果数为x吨,则
总费用为:15x+(360−12x)+10(20−x)+9×[40−(20−x)]+740
由题意得2x+740=750,
解得x=5.
答:从A果园运到C地的苹果数为5吨。
此题考查一元一次方程的应用,解题关键在于列出方程
15、(1)城与台风中心之间的最小距离是;(2)城遭受这次台风影响的时间为小时.
【解析】
(1)城与台风中心之间的最小距离即为点A到OB的垂线段的长,作,根据直角三角形中所对的直角边等于斜边的一半求解即可;
(2)设上点,千米,则还有一点,有千米,则在DG范围内,城遭受这次台风影响,所以求出DG长,除以台风移动的速度即为时间.
【详解】
解:作
在中,
,则
答:城与台风中心之间的最小距离是
设上点,千米,则还有一点,有
千米
是等腰三角形,
是的垂直平分线,
在中,千米,千米
由勾股定理得,(千米)
千米,遭受台风影响的时间是:(小时)
答:城遭受这次台风影响个时间为小时
本题考查了含直角三角形的性质、等腰三角形的性质及勾股定理,正确理解题意是解题的关键.
16、 (1)众数162,中位数161.5;(2)161cm;(3).
【解析】
(1)根据统计图中的数据可以求得这组数据的中位数和众数;
(2)根据加权平均数的求法可以解答本题;
(3)根据题意可以设计出合理的方案,注意本题答案不唯一.
【详解】
解:(1)这10名女生的身高为:154、158、158、161、161、162、162、162、165、167,
∴这10名女生的身高的中位数是:cm,众数是162cm,
即这10名女生的身高的中位数和众数分别是161.5cm、162cm;
(2)平均身高.
(3)可以先将八年级身高是162cm的所有女生挑选出来,若不够,再挑选身高与162cm最接近的,直到挑选到50人为止.
本题考查条形统计图、用样本估计总体、加权平均数、中位数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
17、(1)乙队单独完成需2天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.
【解析】
(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.
(2)根据题意,分别求出三种情况的费用,然后把在工期内的情况进行比较即可.
【详解】
解:(1)设乙队单独完成需x天.
根据题意,得:.
解这个方程得:x=2.
经检验,x=2是原方程的解.
∴乙队单独完成需2天.
(2)设甲、乙合作完成需y天,则有,
解得,y=36;
①甲单独完成需付工程款为:60×3.5=210(万元).
②乙单独完成超过计划天数不符题意,
③甲、乙合作完成需付工程款为:36×(3.5+2)=198(万元).
答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.
本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
18、(1)10,36°.补全条形图见解析;(2)5天,6天;(3)1.
【解析】
(1)根据各部分所占的百分比等于1列式计算即可求出a,用360°乘以所占的百分比求出所对的圆心角的度数,求出8天的人数,补全条形统计图即可.
(2)众数是在一组数据中,出现次数最多的数据.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).
(3)用总人数乘以“活动时间不少于7天”的百分比,计算即可得解.
【详解】
(1)a=1﹣(40%+20%+25%+5%)=1﹣90%=10%.
用360°乘以所占的百分比求出所对的圆心角的度数:360°×10%=36°.
240÷40=600,
8天的人数,600×10%=60,
故答案为10,36°.
补全条形图如下:
(2)∵参加社会实践活动5天的最多,∴众数是5天.
∵600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,
∴中位数是6天.
(3)∵2000×(25%+10%+5%)=2000×40%=1.
∴估计“活动时间不少于7天”的学生人数大约有1人.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、抽样调查.
【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
解:为了解一批灯管的使用寿命,调查具有破坏性,适合采用的调查方式是抽样调查,
故答案为:抽样调查.
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
20、150,1
【解析】
根据众数和中位数的概念求解.
【详解】
这组数据按照从小到大的顺序排列为:150,150,150,1,1,160,165,
则众数为:150,
中位数为:1.
故答案为:150,1
此题考查中位数,众数,解题关键在于掌握其概念
21、m=1、m=-4或m=6.
【解析】
方程两边都乘以(x+2)(x-2)把分式方程化为整式方程,当分式方程有增根或分式方程化成的整式方程无解时原分式方程无解,根据这两种情形即可计算出m的值.
【详解】
解:方程两边都乘以(x+2)(x-2)去分母得,
2(x+2)+mx=3(x-2),
整理得(1-m)x=10,
∴当m=1时,此整式方程无解,所以原分式方程也无解.
又当原分式方程有增根时,分式方程也无解,
∴当x=2或-2时原分式方程无解,
∴2(1-m)=10或-2(1-m)=10,
解得:m=-4或m=6,
∴当m=1、m=-4或m=6时,关于x的方程无解.
本题考查了分式方程的无解条件.分式方程无解有两种情形:一是分式方程有增根;二是分式方程化成的整式方程无解.
22、
【解析】
首先把公因式3提出来,然后按照完全平方公式因式分解即可.
【详解】
解:
=
=
故答案为:.
此题考查利用提取公因式法和公式法因式分解,注意找出整式里面含有的公因式,然后再选用公式法.
23、
【解析】
观察即可知关于的方程的解是函数中y=0时x的值.
【详解】
解:∵直线过点
∴当y=0时x=-3
即的解为x=-3
故答案为:
本题考查了一次函数与一元一次方程的问题,掌握函数图像上的点与方程的关系是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)A(4,3);(2)28.
【解析】
(1)点A是正比例函数与一次函数图像的交点坐标,把与联立组成方程组,方程组的解就是点A的横纵坐标;(2)过点A作x轴的垂线,在Rt△OAD中,由勾股定理求得OA的长,再由BC=OA求得OB的长,用点P的横坐标a表示出点B、C的坐标,利用BC的长求得a值,根据即可求得△OBC的面积.
【详解】
解:(1)由题意得: ,解得,
∴点A的坐标为(4,3).
(2)过点A作x轴的垂线,垂足为D,
在Rt△OAD中,由勾股定理得,
∴.
∵P(a,0),∴B(a,),C(a,-a+7),∴BC=,
∴,解得a=8.
∴.
25、;14
【解析】
原式括号中利用完全平方公式,单项式乘以多项式法则计算,再利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.
【详解】
=
=
=
∴原式
此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.
26、 (1) (2) 3
【解析】
(1)本题是一元二次方程,解答该方程可选择直接用公式法解答.
(2)本题为实数的运算,首先把两个乘法先运算出来,第一个乘法式可以由平方差公式计算,第二个乘法可先把根式化为最简根式再进行约分,最后加减时,注意合并同类根式.
【详解】
(1)解:原方程中a=-1,b=-3,c=2
首先用根的判别式判断该二元一次方程是否有解
得:,所以该方程有解
由公式可得:
即解得
(2)原式=
故答案为(1) (2) 3
本题考察了一元二次方程的解法和实数的混合运算,需要注意的是一元二次方程解答直接首先用根的判别式判断是否有解,在实数运算过程中,先算乘除与乘方后算加减,有括号的先算括号里面的.涉及到根式运算时,务必要化简根式与合并同类根式
题号
一
二
三
四
五
总分
得分
衬衫尺码
39
40
41
42
43
平均每天销售件数
10
12
20
12
12
PM2.5指数
150
155
160
165
天 数
3
2
1
1
2024年山东省滨州市沾化县数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024年山东省滨州市沾化县数学九年级第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省滨州市无棣县九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024年山东省滨州市无棣县九年级数学第一学期开学学业质量监测模拟试题【含答案】,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广西梧州市九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024年广西梧州市九年级数学第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。