终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024年山西省运城市实验中学九年级数学第一学期开学联考试题【含答案】

    立即下载
    加入资料篮
    2024年山西省运城市实验中学九年级数学第一学期开学联考试题【含答案】第1页
    2024年山西省运城市实验中学九年级数学第一学期开学联考试题【含答案】第2页
    2024年山西省运城市实验中学九年级数学第一学期开学联考试题【含答案】第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年山西省运城市实验中学九年级数学第一学期开学联考试题【含答案】

    展开

    这是一份2024年山西省运城市实验中学九年级数学第一学期开学联考试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若点在反比例函数的图象上则的值是( )
    A.B.C.1. 5D.6
    2、(4分)如图,在平面直角坐标系中,函数y=kx与的图像交于A,B两点,过A作y轴的垂线,交函数的图像于点C,连接BC,则△ABC的面积为()
    A.4B.8C.12D.16
    3、(4分)如图,是反比例函数y1=和y2=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲于A、B两点,若S△AOB=3,则k2﹣k1的值是( )
    A.8B.6C.4D.2
    4、(4分)下列各式:,其中分式共有( )
    A.2 个B.3 个C.4 个D.5 个
    5、(4分)-(-6)等于( )
    A.-6B.6C.D.±6
    6、(4分)已知关于的一元二次方程的一个根是,则的值为( )
    A.B.C.D.
    7、(4分)如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是( )
    A.2~4小时B.4~6小时C.6~8小时D.8~10小时
    8、(4分)如图所示,四边形OABC是正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上一动点,则PA+PD的最小值为( )
    A.2B.C.4D.6
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一次函数的图象经过第二、三、四象限,则的取值范围是__________.
    10、(4分)已知关于x的一元二次方程(a2﹣1)x2+3ax﹣3=0的一个解是x=1,则a的值是_____.
    11、(4分)《算法统宗》记载古人丈量田地的诗:“昨日丈量地回,记得长步整三十.广斜相并五十步,不知几亩及分厘.”其大意是:昨天丈量了田地回到家,记得长方形田的长为30步,宽和对角线之和为50步.不知该田有几亩?请我帮他算一算,该田有___亩(1亩=240平方步).
    12、(4分)如图,若直线与交于点,则根据图象可得,二元一次方程组的解是_________.
    13、(4分)已知命题:全等三角形的对应角相等.这个命题的逆命题是:__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠1.
    (1)若CE=1,求BC的长;
    (1)求证:AM=DF+ME.
    15、(8分)我们可用表示以为自变量的函数,如一次函数,可表示为,且,,定义:若存在实数,使成立,则称为的不动点,例如:,令,得,那么的不动点是1.
    (1)已知函数,求的不动点.
    (2)函数(是常数)的图象上存在不动点吗?若存在,请求出不动点;若不存在,请说明理由;
    (3)已知函数(),当时,若一次函数与二次函数的交点为,即两点的横坐标是函数的不动点,且两点关于直线对称,求的取值范围.
    16、(8分)如图1,平面直角坐标系中,直线AB:y=﹣x+b交x轴于点A(8,0),交y轴正半轴于点B.
    (1)求点B的坐标;
    (2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB上一点,过点P作y轴的平行线交直线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;
    (3)在(2)的条件下,M为CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标及PN的长度;若不存在,请说明理由.
    17、(10分)在平面直角坐标系中,已知点A、B的坐标分别为(-,0)、(0,-1),把点A绕坐标原点O顺时针旋转135°得点C,若点C在反比例函数y=的图象上.
    (1)求反比例函数的表达式;
    (2)若点D在y轴上,点E在反比例函数y=的图象上,且以点A、B、D、E为顶点的四边形是平行四边形.请画出满足题意的示意图并在示意图的下方直接写出相应的点D、E的坐标.
    18、(10分)如图,在四边形中,,点为的中点.
    (1)求证:四边形是菱形;
    (2)联结,如果平分, 求的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的关系:______________.
    20、(4分)如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为_____.
    21、(4分)如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交CD于点E,作BF⊥AD,垂足为F,连接EF,小明得到三个结论:①∠FBC=90°;②ED=EB;③S△EBF=S△EDF+S△EBC;则三个结论中一定成立的是_____.
    22、(4分)在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是_________;
    23、(4分)如图,∠MON =∠ACB = 90°,AC = BC,AB =5,△ABC顶点A、C分别在ON、OM上,点D是AB边上的中点,当点A在边ON上运动时,点C随之在边OM上运动,则OD的最大值为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在矩形ABCD中,E是AB的中点,连接DE、CE.
    (1)求证:△ADE≌△BCE;
    (2)若AB=6,AD=4,求△CDE的周长.
    25、(10分)(1)分解因式:a3-2a2b+ab2;
    (2)解方程:x2+12x+27=0
    26、(12分)如图,在直角坐标系中,每个小方格都是边长为的正方形,的顶点均在格点上,点的坐标是.
    先将沿轴正方向向上平移个单位长度,再沿轴负方向向左平移个单位长度得到,画出,点坐标是________;
    将绕点逆时针旋转,得到,画出,并求出点的坐标是________;
    我们发现点、关于某点中心对称,对称中心的坐标是________.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    将A的坐标代入反比例函数进行计算,可得答案.
    【详解】
    将A(﹣2,3)代入反比例函数,得k=﹣2×3=﹣6,故选:A.
    本题考查反比例函数,解题的关键是将点A代入反比例函数.
    2、C
    【解析】
    根据正比例函数y=kx与反比例函数的图象交点关于原点对称,可得出A、B两点坐标的关系,根据垂直于y轴的直线上任意两点纵坐标相同,可得出A、C两点坐标的关系,设A点坐标为(x,),表示出B、C两点的坐标,再根据三角形的面积公式即可解答.
    【详解】
    ∵正比例函数y=kx与反比例函数的图象交点关于原点对称,
    ∴设A点坐标为(x,),则B点坐标为(-x,),C(-2x,),
    ∴S△ABC=×(-2x-x)•()=×(-3x)•()=1.
    故选C.
    本题考查了反比例函数与正比例函数图象的特点,垂直于y轴的直线上任意两点的坐标特点,三角形的面积,解答此题的关键是找出A、B两点与A、C两点坐标的关系.
    3、B
    【解析】
    本题主要考察反比例函数系数的几何意义,反比例函数图像上点的坐标特征,三角形面积等知识点.
    【详解】
    设A(a,b),B(c,d),代入双曲线得到k1=ab, k2=cd.因为三角形AOB的面积为3.所以cd-ab=3.即cd-ab=6.可得k2﹣k1=6.即本题选择B.
    学会将三角形面积的表达与反比例函数的定义联系起来.
    4、A
    【解析】
    判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
    【详解】
    的分母中均不含有字母,因此它们是整式,而不是分式.
    分母中含有字母,因此是分式.
    故选:A.
    此题考查分式的定义,解题关键在于掌握其定义.
    5、B
    【解析】
    根据相反数的概念解答即可.
    【详解】
    解:-(-1)=1.
    故选:B.
    本题主要考查相反数的概念,属于应知应会题型,熟知定义是关键.
    6、C
    【解析】
    把x=-2代入,即可求出a的值.
    【详解】
    把x=-2代入,得
    4-2a-a=0,
    ∴a=.
    故选C.
    本题考查了一元二次方程解的定义,能使一元二次方程成立的未知数的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.
    7、B
    【解析】
    试题分析:根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.
    由条形统计图可得,人数最多的一组是4~6小时,频数为22,
    考点:频数(率)分布直方图
    8、A
    【解析】
    试题解析:连接CD,交OB于P.则CD就是PD+PA和的最小值.
    ∵在直角△OCD中,∠COD=90°,OD=2,OC=6,
    ∴CD=,
    ∴PD+PA=PD+PC=CD=2.
    ∴PD+PA和的最小值是2.
    故选A.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、m<3
    【解析】
    根据一次函数y=(m-3)x-2的图象经过二、三、四象限判断出m的取值范围即可.
    【详解】
    ∵一次函数y=(m-3)x-2的图象经过二、三、四象限,
    ∴m-3<0,
    ∴m<3,
    故答案为:m<3.
    此题考查一次函数的图象与系数的关系,解题关键在于掌握一次函数y=kx+b(k≠0)中,当k<0,b<0时函数的图象在二、三、四象限.
    10、﹣1.
    【解析】
    直接把x=1代入进而方程,再结合a2﹣1≠2,进而得出答案.
    【详解】
    ∵关于x的一元二次方程(a2﹣1)x2+3ax﹣3=2有一个根为x=1,
    ∴(a2﹣1)×1+3a×1﹣3=2,且a2﹣1≠2,
    整理,得(a+1)(a﹣1)=2且(a+1)(a﹣1)≠2.
    则a的值为:a=﹣1.
    故答案是:﹣1.
    本题考查了一元二次方程解的定义,能使一元二次方程成立的未知数的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.
    11、1.
    【解析】
    根据矩形的性质、勾股定理求得长方形的宽,然后由矩形的面积公式解答.
    【详解】
    设该矩形的宽为x步,则对角线为(50﹣x)步,
    由勾股定理,得301+x1=(50﹣x)1,
    解得x=16
    故该矩形的面积=30×16=480(平方步),
    480平方步=1亩.
    故答案是:1.
    考查了勾股定理的应用,此题利用方程思想求得矩形的宽.
    12、
    【解析】
    二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即直线L1与L2的交点P的坐标.
    【详解】
    解:根据题意知,
    二元一次方程组的解就是直线l1与l2的交点P的坐标,
    又∵P(2,1),
    ∴原方程组的解是:
    故答案是:
    本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.
    13、对应角相等的三角形全等
    【解析】
    根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.
    【详解】
    命题“全等三角形对应角相等”的题设是“全等三角形”,结论是“对应角相等”,
    故其逆命题是对应角相等的三角形是全等三角形.
    故答案是:对应角相等的三角形是全等三角形.
    考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)1;(1)见解析.
    【解析】
    试题分析:(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠1,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;
    (1)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证.
    试题解析:(1)∵四边形ABCD是菱形,
    ∴AB∥CD,
    ∴∠1=∠ACD,
    ∵∠1=∠1,
    ∴∠ACD=∠1,
    ∴MC=MD,
    ∵ME⊥CD,
    ∴CD=1CE,
    ∵CE=1,
    ∴CD=1,
    ∴BC=CD=1;
    (1)AM=DF+ME
    证明:如图,
    ∵F为边BC的中点,
    ∴BF=CF=BC,
    ∴CF=CE,
    在菱形ABCD中,AC平分∠BCD,
    ∴∠ACB=∠ACD,
    在△CEM和△CFM中,
    ∵,
    ∴△CEM≌△CFM(SAS),
    ∴ME=MF,
    延长AB交DF的延长线于点G,
    ∵AB∥CD,
    ∴∠G=∠1,
    ∵∠1=∠1,
    ∴∠1=∠G,
    ∴AM=MG,
    在△CDF和△BGF中,

    ∴△CDF≌△BGF(AAS),
    ∴GF=DF,
    由图形可知,GM=GF+MF,
    ∴AM=DF+ME.
    15、(1的不动点为0和2;(2)①时,有唯一的不动点②时,有无数个不动点③时,没有不动点;(3)的取值范围是
    【解析】
    (1)根据不动点的性质即可列方程求解;
    (2)令,得:,根据m,n的取值进行讨论即可求解;
    (3)令,则,根据一元二次方程根与系数求出A,B的中点C的坐标,再根据点在直线上,得到,得到b关于a的二次函数,再根据二次函数的性质即可求解.
    【详解】
    解:(1)令,则,,.
    所以,的不动点为0和2.
    (2)令,得:.
    ①若,即时,有唯一的不动点;
    ②若,,即时,有无数个不动点;
    ③若,即时,没有不动点0.
    (3)令,则.
    设,,则,.
    的中点坐标为
    ,.
    所以,
    点在直线上,
    所以,.
    .
    当时,.
    此时,恒大于0
    所以,的取值范围是:.
    此题主要考查二次函数的应用,解题的关键是根据题意理解不动点的定义与性质.
    16、 (1) B(0,6);(2) d=﹣t+10;(3)见解析.
    【解析】
    【分析】(1)把A(8,0)代入y=﹣x+b,可求解析式,再求B的坐标;(2)先求点C(0,﹣4),再求直线AC解析式,可设点P(t,﹣t+6),Q(t, t﹣4),所以d=(﹣t+6)﹣(t﹣4);过点M作MG⊥PQ于G,证△OAC≌△GMQ,得QG=OC=4,GM=OA=8;过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,得四边形GHRM是矩形,得HR=GM=8;设GH=RM=k,由△HNQ≌△RMN,得HN=RM=k,NR=QH=4+k,由HR=HN+NR,得k+4+k=8,可得GH=NH=RM=2,HQ=6,由Q(t,t﹣4),得N(t+2,t﹣4+6),代入y=﹣x+6,得t+2=﹣(t+2)+6,求出t=2,再求P(2,),N(4,3),可得PH=,NH=2,最后PN=.
    【详解】解:(1)∵y=﹣x+b交x轴于点A(8,0),
    ∴0=﹣×8+b,b=6,
    ∴直线AB解析式为y=﹣x+6,令x=0,y=6,B(0,6);
    (2)∵A(8,0),B(0,6),
    ∴OA=8,OB=6,
    ∵∠AOB=90°,
    ∴AB=10=BC,
    ∴OC=4,
    ∴点C(0,﹣4),设直线AC解析式为y=kx+b’,
    ∴,
    ∴,
    ∴直线AC解析式为y=x﹣4,
    ∵P在直线y=﹣x+6上,
    ∴可设点P(t,﹣t+6),
    ∵PQ∥y轴,且点Q在y=x﹣4 上,
    ∴Q(t, t﹣4),
    ∴d=(﹣t+6)﹣(t﹣4)=﹣t+10;
    (3)过点M作MG⊥PQ于G,
    ∴∠QGM=90°=∠COA,
    ∵PQ∥y轴,
    ∴∠OCA=∠GQM,
    ∵CQ=AM,
    ∴AC=QM,在△OAC与△GMQ中,

    ∴△OAC≌△GMQ,
    ∴QG=OC=4,GM=OA=8,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,
    ∴∠MGH=∠RHG=∠MRH=90°,
    ∴四边形GHRM是矩形,
    ∴HR=GM=8,可设GH=RM=k,
    ∵△MNQ是等腰直角三角形,
    ∴∠QMN=90°,NQ=NM,
    ∴∠HNQ+∠HQN=90°,
    ∴∠HNQ+∠RNM=90°,
    ∴∠RNM=∠HQN,
    ∴△HNQ≌△RMN,
    ∴HN=RM=k,NR=QH=4+k,
    ∵HR=HN+NR,
    ∴k+4+k=8,
    ∴k=2,
    ∴GH=NH=RM=2,
    ∴HQ=6,
    ∵Q(t,t﹣4),
    ∴N(t+2,t﹣4+6)即 N(t+2,t+2)
    ∵N在直线AB:y=﹣x+6上,
    ∴t+2=﹣(t+2)+6,
    ∴t=2,
    ∴P(2,),N(4,3),
    ∴PH=,NH=2,
    ∴PN=
    =.
    【点睛】本题考核知识点:一次函数综合应用.解题关键点:熟记一次函数性质,运用数形结合思想.
    17、(1)y=;(2)示意图见解析,E(-,-),D(0,-1-)或E(-,-),D(0,-1+)或E , D
    【解析】
    (1)根据旋转和直角三角形的边角关系可以求出点C的坐标,进而确定反比例函数的关系式;
    (2)分两种情况进行讨论解答,①点E在第三象限,由题意可得E的横坐标与点A的相同,将A的横坐标代入反比例函数的关系式,可求出纵坐标,得到E的坐标,进而得到AE的长,也是BD的长,因此D在B的上方和下方,即可求出点D的坐标,②点E在第一象限,由三角形全等,得到E的横坐标,代入求出纵坐标,确定E的坐标,进而求出点D的坐标.
    【详解】
    (1)由旋转得:OC=OA=,∠AOC=135°,
    过点C作CM⊥y轴,垂足为M,则∠COM=135°-90°=45°,
    在Rt△OMC中,∠COM=45°,OC=,
    ∴OM=CM=1,
    ∴点C(1,1),代入y=得:k=1,
    ∴反比例函数的关系式为:y=,
    答:反比例函数的关系式为:y=
    (2)①当点E在第三象限反比例函数的图象上,如图1,图2,

    ∵点D在y轴上,AEDB是平行四边形,
    ∴AE∥DB,AE=BD,AE⊥OA,
    当x=-时,y==-,
    ∴E(-,-)
    ∵B(0,-1),BD=AE=,
    当点D在B的下方时,
    ∴D(0,-1-)
    当点D在B的上方时,
    ∴D(0,-1+),
    ②当点E在第一象限反比例函数的图象上时,如图3,
    过点E作EN⊥y轴,垂足为N,
    ∵ABED是平行四边形,
    ∴AB=DE,AB=DE,
    ∴∠ABO=∠EDO,
    ∴△AOB≌△END (AAS),
    ∴EN=OA=,DN=OB=1,
    当x=时,代入y=得:y=,
    ∴E(,),
    ∴ON=,OD=ON+DN=1+,
    ∴D(0,1+)
    考查反比例函数图象上点的坐标特征、平行四边形的性质、以及全等三角形的判定和性质等知识,画出不同情况下的图形是解决问题的关键.
    18、(1)见解析;(2)2
    【解析】
    (1)根据菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,据此判断即可.
    (2)此题有两种解决方法,方法一:证明四边形是等腰梯形,方法二:证明∠BDC为直角.
    【详解】
    (1)证明:,点为的中点,

    又四边形是平行四边形
    ,四边形是菱形
    (2)解:方法一四边形是梯形.
    平分
    四边形是菱形,.
    四边形是等腰梯形,
    方法二:平分
    ,即,
    四边形是菱形,
    ,即,
    此题考查菱形的判定与性质,解题关键在于结结合题意运用菱形的判定与性质即可.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    试题分析:本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式,再进行整理即可得出答案.
    解:根据题意得:
    y=,
    整理得:;
    则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是y=;
    故答案为y=.
    考点:分段函数.
    20、4.8cm.
    【解析】
    根据菱形的性质可得AB=5cm,根据菱形的面积公式可得S菱形ABCD=AC•BD=AB•DH,即DH==4.8cm.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,
    ∴AB=5cm,
    ∴S菱形ABCD=AC•BD=AB•DH,
    ∴DH==4.8cm.
    本题考查了菱形的边长问题,掌握菱形的性质、菱形的面积公式是解题的关键.
    21、①③
    【解析】
    由垂直的定义得到∠AFB=90°,根据平行线的性质即可得到∠AFB=∠CBF=90°,故①正确;延长FE交BC的延长线与M,根据全等三角形的性质得到EF=EM=FM,根据直角三角形的性质得到BE=FM,等量代换的EF=BE,故②错误;由于S△BEF=S△BME,S△DFE=S△CME,于是得到S△EBF=S△BME=S△EDF+S△EBC.故③正确.
    【详解】
    解:∵BF⊥AD,
    ∴∠AFB=90°,
    ∵在平行四边形ABCD中,AD∥BC,
    ∴∠AFB=∠CBF=90°,故①正确;
    延长FE交BC的延长线与M,
    ∴∠DFE=∠M,
    在△DFE与△CME中,,
    ∴△DFE≌△CME(AAS),
    ∴EF=EM=FM,
    ∵∠FBM=90°,
    ∴BE=FM,
    ∴EF=BE,
    ∵EF≠DE,
    故②错误;
    ∵EF=EM,
    ∴S△BEF=S△BME,
    ∵△DFE≌△CME,
    ∴S△DFE=S△CME,
    ∴S△EBF=S△BME=S△EDF+S△EBC.故③正确.
    故答案为:①③.
    此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△DEF≌△CME是解题关键.
    22、﹣3<x<1
    【解析】
    根据第四象限内横坐标为正,纵坐标为负可得出答案.
    【详解】
    ∵点P(2x-6,x-5)在第四象限,

    解得-3<x<1.故答案为-3<x<1.
    本题考查了点的坐标、一元一次不等式组,解题的关键是知道平面直角坐标系中第四象限横、纵坐标的符号.
    23、.
    【解析】
    如图,取AC的中点E,连接OE、DE、OD,由OD≤OE+DE,可得当O、D、E三点共线时,点D到点O的距离最大,再根据已知条件,结合三角形的中位线定理及直角三角形斜边中线的性质即可求得OD的最大值.
    【详解】
    如图,取AC的中点E,连接OE、DE、OD,
    ∵OD≤OE+DE,
    ∴当O、D、E三点共线时,点D到点O的距离最大,
    ∵∠ACB = 90°,AC = BC,AB =5,
    ∴AC=BC=
    ∵点E为AC的中点,点D为AB的中点,
    ∴DE为△ABC的中位线,
    ∴DE=BC=;
    在Rt△ABC中,点E为AC的中点,
    ∴OE=AC=;
    ∴OD的最大值为:OD+OE=.
    故答案为:.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质、三角形的中位线定理及勾股定理等知识点,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2)1.
    【解析】
    (1)由全等三角形的判定定理SAS即可证得结论;
    (2)由(1)中全等三角形的对应边相等和勾股定理求得线段DE的长度,结合三角形的周长公式解答.
    【详解】
    (1)在矩形ABCD中,AD=BC,∠A=∠B=90°.
    ∵E是AB的中点,
    ∴AE=BE,
    在△ADE与△BCE中,

    ∴△ADE≌△BCE(SAS);
    (2)由(1)知:△ADE≌△BCE,则DE=EC,
    在直角△ADE中,AE=4,AE=AB=3,
    由勾股定理知,DE==5,
    ∴△CDE的周长=2DE+AD=2DE+AB=2×5+6=1.
    本题考查了全等三角形的判定和性质,矩形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
    25、a(a-b)2,x=-3或x=-9.
    【解析】
    (1)先提取公因式,在运用公式法因式分解即可。
    (2)运用因式分解法,即可解方程。
    【详解】
    解:(1)a3-2a2b+ab2
    = a(a2-2ab+b2)
    =a(a-b)2
    (2) x2+12x+27=0
    (x+3)(x+9)=27
    即:x+3=0或x+9=0
    解得:x=-3或x=-9
    本题考查了因式分解及其应用,特别是用因式分解解一元二次方程是常用的方法。
    26、, , .
    【解析】
    (1)直接利用平移的性质得出对应点位置进而得出答案;
    (2)直接利用旋转的性质得出对应点位置进而得出答案;
    (3)直接利用关于点对称的性质得出对称中心即可.
    【详解】
    (1)如图所示:△A1B1C1,即为所求,点C1坐标是:(−2,1);
    故答案为(−2,1);
    (2)如图所示:△A2B1C2,即为所求,点C2坐标是:(−5,0);
    故答案为(−5,0);
    (3)点C. C2关于某点中心对称,对称中心的坐标是:(−3,−1).
    故答案为(−3,−1).
    本题考查了坐标系中作图,解题的关键是根据图形找出相对应的点即可.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024年山西省运城市永济市九年级数学第一学期开学综合测试试题【含答案】:

    这是一份2024年山西省运城市永济市九年级数学第一学期开学综合测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山西省运城市盐湖区九年级数学第一学期开学监测试题【含答案】:

    这是一份2024年山西省运城市盐湖区九年级数学第一学期开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年广东省实验中学数学九年级第一学期开学联考模拟试题【含答案】:

    这是一份2024年广东省实验中学数学九年级第一学期开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map