2024年陕西省宝鸡市扶风县九年级数学第一学期开学检测试题【含答案】
展开这是一份2024年陕西省宝鸡市扶风县九年级数学第一学期开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图的阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是( )
A.16B.25C.144D.169
2、(4分)下列运算正确的是( )
A.B.
C.D.
3、(4分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元与上网时间x(h)的函数关系如图所示,则下列判断错误的是
A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多
C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱
4、(4分)下列调查适合普查的是( )
A.调查2011年3月份市场上西湖龙井茶的质量
B.了解萧山电视台188热线的收视率情况
C.网上调查萧山人民的生活幸福指数
D.了解全班同学身体健康状况
5、(4分)如图,已知一次函数y=ax+b和y=kx的图象相交于点P,则根据图象可得二元一次方程组的解是( )
A.B.C.D.
6、(4分)如图,一次函数的图象与两坐标轴分别交于、两点,点是线段上一动点(不与点A、B重合),过点分别作、垂直于轴、轴于点、,当点从点开始向点运动时,则矩形的周长( )
A.不变B.逐渐变大C.逐渐变小D.先变小后变大
7、(4分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
8、(4分)若点P(a,2)在第二象限,则a的值可以是( )
A.B.0C.1D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,直线y=mx与双曲线y=交于A、B两点,D为x轴上一点,连接BD交y轴与点C,若C(0,-2)恰好为BD中点,且△ABD的面积为6,则B点坐标为__________.
10、(4分)如图,已知△ABC是面积为4的等边三角形,△ABC∽△ADE,
AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积
等于___(结果保留根号).
11、(4分)使得分式值为零的x的值是_________;
12、(4分)已知菱形两条对角线的长分别为12和16,则这个菱形的周长为______.
13、(4分)如图,菱形ABCD的对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=10cm,则OE的长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,在矩形中,点,分别在,边上,,连接,.求证:.
15、(8分)如图①,在矩形ABCD中,AB=,BC=3,在BC边上取两点E、F(点E在点F的左边),以EF为边所作等边△PEF,顶点P恰好在AD上,直线PE、PF分别交直线AC于点G、H.
(1)求△PEF的边长;
(2)若△PEF的边EF在线段CB上移动,试猜想:PH与BE有何数量关系?并证明你猜想的结论;
(3)若△PEF的边EF在射线CB上移动(分别如图②和图③所示,CF>1,P不与A重合),(2)中的结论还成立吗?若不成立,直接写出你发现的新结论.
16、(8分)某经销商从市场得知如下信息:
他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.
(1)试写出y与x之间的函数关系式;
(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;
(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.
17、(10分)如图l,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AMBE,垂足为M,AM交BD于点F.
(1)求证:OE=OF;
(2)如图2,若点E在AC的延长线上,AMBE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗.如果成立,请给出证明;如果不成立,请说明理由.
18、(10分)已知为原点,点及在第一象限的动点,且,设的面积为.
(1)求关于的函数解析式;
(2)求的取值范围;
(3)当时,求点坐标;
(4)画出函数的图象.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,平行四边形ABCD内的一点E到边AD,AB,BC的距离相等,则∠AEB的度数等于____.
20、(4分)若关于x的方程的解是负数,则a的取值范围是_____________。
21、(4分)若正比例函数,y随x的增大而减小,则m的值是_____.
22、(4分)在平面直角坐标系中,点P(1,2)关于y轴的对称点Q的坐标是________;
23、(4分)在平面直角坐标系中,点P(﹣,﹣1)到原点的距离为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线y=﹣2x+3与x轴相交于点A,与y轴相交于点B.
(1)求A,B两点的坐标;
(2)过B点作直线BP与x轴相交于点P,且使OP=2OA,求△ABP的面积.
25、(10分)已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是甲乙两车离A地的距离y(千米)与行驶时间x(小时)之间的函数图象.
(1)求甲车离A地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;
(2)若它们出发第5小时时,离各自出发地的距离相等,求乙车离A地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;
(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.
26、(12分)如图(1),在矩形中,分别是的中点,作射线,连接.
(1)请直接写出线段与的数量关系;
(2)将矩形变为平行四边形,其中为锐角,如图(2),,分别是的中点,过点作交射线于点,交射线于点,连接,求证:;
(3)写出与的数量关系,并证明你的结论.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
两个阴影正方形的面积和等于直角三角形另一未知边的平方,利用勾股定理即可求出.
【详解】
两个阴影正方形的面积和为132- 122= 25,所以B选项是正确的.
本题主要考查了正方形的面积以及勾股定理的应用,推知“正方形的面积和等于直角三角形另一未知边的平方”是解题的难点.
2、D
【解析】
试题分析:A、,故A选项错误;
B、,故B选项错误;
C、,故C选项错误;
D、,故D选项正确,
故选D.
考点:约分
3、D
【解析】
A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;
B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;
C、利用待定系数法求出:当x≥25时,yA与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时yA的值,将其与50比较后即可得出结论C正确;
D、利用待定系数法求出:当x≥50时,yB与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时yB的值,将其与120比较后即可得出结论D错误.
综上即可得出结论.
【详解】
A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;
B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;
C、设当x≥25时,yA=kx+b,
将(25,30)、(55,120)代入yA=kx+b,得:
,解得:,
∴yA=3x-45(x≥25),
当x=35时,yA=3x-45=60>50,
∴每月上网时间为35h时,选择B方式最省钱,结论C正确;
D、设当x≥50时,yB=mx+n,
将(50,50)、(55,65)代入yB=mx+n,得:
,
解得:,
∴yB=3x-100(x≥50),
当x=70时,yB=3x-100=110<120,
∴结论D错误.
故选D.
本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.
4、D
【解析】
解:A、B、C范围广,工作量大,不宜采用普查,只能采用抽样调查;
D工作量小,没有破坏性,适合普查.
故选D.
5、A
【解析】
分析:本题利用一次函数与方程组的关系来解决即可.
解析:两个函数的交点坐标即为方程组的解,由图知P( -4,-2 ),∴方程组的解为.
故选A.
点睛:方程组与一次函数的关系:两条直线相交,交点坐标即为两个函数解析式组成的方程组的解.本体关键是要记得这个知识点,然后看图直接给出答案.
6、A
【解析】
根据一次函数图象上点的坐标特征可设出点C的坐标为(m,-m+1),根据矩形的周长公式即可得出C矩形CDOE=2,此题得解.
【详解】
解:设点的坐标为,,
则,,
,
故选:.
本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C的坐标是解题的关键.
7、C
【解析】
根据轴对称图形和中心对称图形的定义进行分析即可.
【详解】
A、不是轴对称图形,也不是中心对称图形.故此选项错误;
B、不是轴对称图形,也不是中心对称图形.故此选项错误;
C、是轴对称图形,也是中心对称图形.故此选项正确;
D、是轴对称图形,但不是中心对称图形.故此选项错误.
故选C.
考点:1、中心对称图形;2、轴对称图形
8、A
【解析】
根据第二象限内点的横坐标是负数判断.
【详解】
解:∵点P(a,1)在第二象限,
∴a<0,
∴-1、0、1、1四个数中,a的值可以是-1.
故选:A.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(,-4)
【解析】
设点B坐标为(a,b),由点C(0,-2)是BD中点可得b=-4,D(-a,0),根据反比例函数的对称性质可得A(-a,4),根据A、D两点坐标可得AD⊥x轴,根据△ABD的面积公式列方程可求出a值,即可得点B坐标.
【详解】
设点B坐标为(a,b),
∵点C(0,-2)是BD中点,点D在x轴上,
∴b=-4,D(-a,0),
∵直线y=mx与双曲线y=交于A、B两点,
∴A(-a,4),
∴AD⊥x轴,AD=4,
∵△ABD的面积为6,
∴S△ABD=AD×2a=6
∴a=,
∴点B坐标为(,-4)
本题考查反比例函数的性质,反比例函数图象是以原点为对称中心的双曲线,根据反比例函数的对称性表示出A点坐标是解题关键.
10、3-
【解析】
根据相似三角形面积比等于相似比的平方求得三角形ADE的面积,然后求出其边长,过点F作FH⊥AE,过C作CM⊥AB,利用三角函数求出HF的值,即可得出三角形AFE的面积.
【详解】
解:作CM⊥AB于M,
∵等边△ABC的面积是4,
∴设BM=x,∴tan∠BCM=,
∴BM=CM,
∴×CM×AB=×2×CM2=4,
∴CM=2,BM=2,
∴AB=4,AD=AB=2,
在△EAD中,作HF⊥AE交AE于H,
则∠AFH=45°,∠EFH=30°,
∴AH=HF,
设AH=HF=x,则EH=xtan30°=x.
又∵AH+EH=AE=AD=2,
∴x+x=2,
解得x=3-.
∴S△AEF=×2×(3-)=3-.
故答案为3-
11、2
【解析】
根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.
【详解】
解:要使分式有意义则 ,即
要使分式为零,则 ,即
综上可得
故答案为2
本题主要考查分式的性质,关键在于分式的分母不能为0.
12、1
【解析】
根据菱形的对角线互相垂直平分,利用勾股定理即可解决.
【详解】
如图,四边形ABCD是菱形,AC=12,BD=16,
∵四边形ABCD是菱形,
∴AC⊥BC,AB=BC=CD=AD,AO=OC=6,OB=OD=8,
在Rt△AOB中,AB=,
∴菱形ABCD周长为1.
故答案为1
本题考查菱形的性质、勾股定理等知识,记住菱形的对角线互相垂直平分、菱形的四边相等是解决问题的关键,属于中考常考题型.
13、5cm
【解析】
只要得出OE是△ABC的中位线,从而求得OE的长.
【详解】
解:∵OE∥DC,AO=CO,
∴OE是△ABC的中位线,
∵四边形ABCD是菱形,
∴AB=AD=10cm,
∴OE=5cm.
故答案为5cm.
本题考查了菱形的性质及三角形的中位线定理,属于基础题,关键是得出OE是△ABC的中位线,难度一般.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
根据矩形的性质得出DC∥AB,DC=AB,求出CF=AE,CF∥AE,根据平行四边形的判定得出四边形AFCE是平行四边形,即可得出答案.
【详解】
证明:∵四边形ABCD是矩形,
∴DC∥AB,DC=AB,
∴CF∥AE,
∵DF=BE,
∴CF=AE,
∴四边形AFCE是平行四边形,
∴AF=CE.
本题考查了平行四边形的性质和判定,矩形的性质的应用,注意:矩形的对边相等且平行,平行四边形的对边相等.
15、(1)△PEF的边长为2;(2)PH﹣BE=1,证明见解析;(3)结论不成立,当1<CF<2时,PH=1﹣BE,当2<CF<3时,PH=BE﹣1.
【解析】
(1)过P作PQ⊥BC,垂足为Q,由四边形ABCD为矩形,得到∠B为直角,且AD∥BC,得到PQ=AB,又△PEF为等边三角形,根据“三线合一”得到∠FPQ为30°,在Rt△PQF中,设出QF为x,则PF=2x,由PQ的长,根据勾股定理列出关于x的方程,求出x的值,即可得到PF的长,即为等边三角形的边长;
(2)PH﹣BE=1,过E作ER垂直于AD,如图所示,首先证明△APH为等腰三角形,在根据矩形的对边平行得到一对内错角相等,可得∠APE=60°,在Rt△PER中,∠REP=30°,根据直角三角形中,30°角所对的直角边等于斜边的一半,由PE求出PR,由PA=PH,则PH﹣BE=PA﹣BE=PA﹣AR=PR,即可得到两线段的关系;
(3)当若△PEF的边EF在射线CB上移动时(2)中的结论不成立,由(2)的解题思路可知当1<CF<2时,PH=1﹣BE,当2<CF<3时,PH=BE﹣1.
【详解】
解:(1)过P作PQ⊥BC于Q(如图1),
∵四边形ABCD是矩形, ∴∠B=90°,即AB⊥BC,
又∵AD∥BC, ∴PQ=AB=, ∵△PEF是等边三角形, ∴∠PFQ=60°,
在Rt△PQF中,∠FPQ=30°, 设PF=2x,QF=x,PQ=,根据勾股定理得:,
解得:x=1,故PF=2,
∴△PEF的边长为2;
(2)PH﹣BE=1,理由如下:
∵在Rt△ABC中,AB=,BC=3, ∴由勾股定理得AC=2,
∴CD=AC, ∴∠CAD=30° ∵AD∥BC,∠PFE=60°, ∴∠FPD=60°, ∴∠PHA=30°=∠CAD,
∴PA=PH, ∴△APH是等腰三角形, 作ER⊥AD于R(如图2) Rt△PER中,∠RPE=60°, ∴PR=PE=1,
∴PH﹣BE=PA﹣BE=PR=1.
(3)结论不成立,
当1<CF<2时,PH=1﹣BE, 当2<CF<3时,PH=BE﹣1.
本题考查相似形综合题.
16、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.
【解析】
(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;
(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;
(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.
【详解】
解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.
由700x+100(100﹣x)≤40000得x≤50.
∴y与x之间的函数关系式为y=140x+6000(x≤50)
(2)令y≥12600,即140x+6000≥12600,
解得x≥47.1.
又∵x≤50,∴经销商有以下三种进货方案:
(3)∵140>0,∴y随x的增大而增大.
∴x=50时y取得最大值.
又∵140×50+6000=13000,
∴选择方案③进货时,经销商可获利最大,最大利润是13000元.
本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.
17、(1)证明见解析;(2)成立,证明见解析.
【解析】
解:(1)∵四边形ABCD是正方形.
∴∠BOE=∠AOF=90°,OB=OA,
又∵AM⊥BE,
∴∠MEA+∠MAE=90°=∠AFO+∠MAE
∴∠MEA=∠AFO,
∴Rt△BOE≌ Rt△AOF
∴OE=OF
(2)OE=OF成立
∵四边形ABCD是正方形,
∴∠BOE=∠AOF=90°,OB=OA
又∵AM⊥BE,
∴∠F+∠MBF=90°=∠E+∠OBE
又∵∠MBF=∠OBE
∴∠F=∠E
∴Rt△BOE≌Rt△AOF
∴OE=OF
18、(1)S=−4x+48;(2)0<x<12;(3)P(1,3);(4)见解析.
【解析】
(1)根据三角形的面积公式即可得出结论;
(2)根据(1)中函数关系式及点P在第一象限即可得出结论;
(3)把S=12代入(1)中函数关系即可得出x的值,进而得出y的值;
(4)利用描点法画出函数图象即可.
【详解】
解:(1)∵A点和P点的坐标分别是(8,0)、(x,y),
∴S=×8×y=4y.
∵x+y=12,
∴y=12−x.
∴S=4(12−x)=48−4x,
∴所求的函数关系式为:S=−4x+48;
(2)由(1)得S=−4x+48>0,
解得:x<12;
又∵点P在第一象限,
∴x>0,
综上可得x的取值范围为:0<x<12;
(3)∵S=12,
∴−4x+48=12,
解得x=1.
∵x+y=12,
∴y=12−1=3,
即P(1,3);
(4)∵函数解析式为S=−4x+48,
∴函数图象是经过点(12,0)(0,48)但不包括这两点的线段.
所画图象如图:
本题考查的是一次函数的应用,根据题意得到函数关系式,并熟知一次函数的图象和性质是解答此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、90°
【解析】
点E到边AD,AB,BC的距离相等,可知可知AE、BE分别为∠DAB、∠ABC的角平分线,然后根据角平分线的定义及三角形内角和求解即可.
【详解】
依题意,可知AE、BE分别为∠DAB、∠ABC的角平分线,
又AD∥BC,
所以,∠DAB+∠CBA=180°,
所以,∠DAB+∠CBA=90°,
即∠EAB+∠EBA=90°,
所以,∠AEB=90°.
故答案为:90°.
本题考查了角平分线的判定,平行四边形的性质,三角形内角和等知识,证明AE、BE分别为∠DAB、∠ABC的角平分线是解答本题的关键.
20、
【解析】
:把a看作常数,根据分式方程的解法求出x的表达式,再根据方程的解是负数列不等式组并求解即可:
【详解】
解:∵
∴
∵关于x的方程的解是负数
∴
∴
解得
本题考查了分式方程的解与解不等式,把a看作常数求出x的表达式是解题的关键.
21、﹣2
【解析】
根据正比例函数的定义及性质可得,且m-1<0,即可求出m的值.
【详解】
由题意可知:
,且m-1<0,
解得m=-2.
故答案为:-2.
本题考查了正比例函数定义及性质.当k<0时,函数值y随x的增大而减小;当k>0时,函数值y随x的增大而增大.
22、(-1,2)
【解析】
关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.
【详解】
关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.
故Q坐标为(-1,2).
故答案为:(-1,2).
此题考查的是关于y轴对称的两点坐标的特点,掌握两点关于坐标轴或原点对称坐标特点是解决此题的关键.
23、2
【解析】
∵点P的坐标为,
∴OP=,即点P到原点的距离为2.
故答案为2.
点睛:平面直角坐标系中,点P到原点的距离=.
二、解答题(本大题共3个小题,共30分)
24、(1)A(,0),B(0,3);(2)或.
【解析】
分析:(1)由函数解析式,令y=0求得A点坐标,x=0求得B点坐标;
(2)有两种情况,若BP与x轴正方向相交于P点,则;若BP与x轴负方向相交于P点,则,由此求得的面积.
详解:(1)令y=0,得
∴A点坐标为
令x=0,得y=3,
∴B点坐标为(0,3);
∵
∴ 或
∴AP=或,
∴,或.
点睛:考查了一次函数的相关知识,是初中数学的常考题目,关键是求出一次函数与坐标轴的交点坐标.
25、(1) ;(2)140千米,y乙=300﹣28x ,(0≤x≤);(3)或小时
【解析】
(1)由图知,该函数关系在不同的时间里表现出不同的关系,需分段表达,可根据待定系数法列方程,求函数关系式.(2)根据题意求出乙车速度,列出y乙与行驶时间x的函数关系式;(3)联立方程分段求出相遇时间.
【详解】
(1)由图象可知,甲车由A到B的速度为300÷3=100千米/时,由B到A的速度为千米/时,
则当0≤x≤3时:y甲=100x,
当3≤x≤时:y甲=300﹣80(x﹣3)=﹣80x+540,
∴y甲=,
(2)当x=5时,y甲=﹣80×5+540=140(千米),
则第5小时时,甲距离A140千米,则乙距离B140千米,则乙的速度为140÷5=28千米/时,
则y乙=300﹣28x (0≤x≤),
(3)当0≤x≤3时,
100x=300﹣28x,
解得x=.
当3≤x≤时,
300﹣28x=﹣80x+540,
x=.
∴甲、乙两车相遇的时间为或小时,
本题考查了一次函数的应用,解题的关键是明确题意,利用数形结合的思想解答本题.
26、(1)MD=MC;(2)见解析;(3)∠BME=3∠AEM,证明见解析.
【解析】
(1)由“SAS”可证△ADM≌△BCM,可得MD=MC;
(2)由题意可证四边形ADNM是平行四边形,可得AD∥MN,可得EF=FC,MF⊥EC,由线段垂直平分线的性质可得ME=MC;
(3)由等腰三角形的性质和平行线的性质可得∠BME=3∠AEM.
【详解】
解:(1)∵四边形ABCD是矩形,
∴AD=BC,∠A=∠B=90°,
∵点M是AB中点,
∴AM=BM,
∴△ADM≌△BCM(SAS),
∴MD=MC;
(2)∵M、N分别是AB、CD的中点,
∴AM=BM,CN=DN,
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴DN=AM=CN=BM,
∴四边形ADNM是平行四边形,
∴AD∥MN,
∴,∠AEC=∠NFC=90°,
∴EF=CF,且MF⊥EC,
∴ME=MC;
(3)∠BME=3∠AEM,
证明:∵EM=MC,EF=FC,
∴∠EMF=∠FMC,
∵AB=2BC,M是AB中点,
∴MB=BC,
∴∠BMC=∠BCM,
∵MN∥AD,AD∥BC,
∴AD∥MN∥BC,
∴∠AEM=∠EMF,∠FMC=∠BCM,
∴∠AEM=∠EMF=∠FMC=∠BCM=∠BMC,
∴∠BME=3∠AEM.
本题是四边形综合题,考查了平行四边形的判定和性质,矩形的性质,全等三角形的判定和性质,等腰三角形的性质等知识,(2)中证明EF=CF是本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
A品牌手表
B品牌手表
进价(元/块)
700
100
售价(元/块)
900
160
方案
A品牌(块)
B品牌(块)
①
48
52
②
49
51
③
50
50
相关试卷
这是一份陕西省宝鸡市扶风县2023-2024学年九年级上学期期末数学试题,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份陕西省宝鸡市扶风县2023-2024学年九年级数学第一学期期末监测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,如图,四边形内接于⊙,等内容,欢迎下载使用。
这是一份2023-2024学年陕西省宝鸡市扶风县九年级上学期期中数学模拟试题(含答案),共8页。