2024年陕西省西安市东城第一中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知,则的值为( )
A.B.-2C.D.2
2、(4分)如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,则∠BP′C的度数为 ( )
A.105°B.112.5°C.120°D.135°
3、(4分)如图,在中,,若.则正方形与正方形的面积和为( )
A.25B.144C.150D.169
4、(4分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是( )
A.3B.C.5D.
5、(4分)下列各式中,从左到右的变形,属于分解因式的是( )
A.10x2-5x=5x(2x-1)B.a2-b2-c2=(a-b)(a+b)-c2
C.a(m+n)=am+anD.2x2-4y+2=2(x2-2y)
6、(4分)如图,在正方形ABCD中,E是AD的中点,F是CD上一点,且CF=3FD.则图中相似三角形的对数是( )
A.1B. 2C.3D.)4
7、(4分)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )
A.B.1,
C.6,7,8D.2,3,4
8、(4分)一个多边形的每一个外角都等于它相邻的内角的一半,则这个多边形的边数是( )
A.3B.4C.5D.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若一组数据6,x,2,3,4的平均数是4,则这组数据的方差为______.
10、(4分)计算:____________.
11、(4分)如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PE⊥AC于F,则EF的最小值_____.
12、(4分)不等式组的解集是x>4,那么m的取值范围是_____.
13、(4分)现有甲、乙两支足球队,每支球队队员身高的平均数均为1.85米,方差分别为,,则身高较整齐的球队是__队
三、解答题(本大题共5个小题,共48分)
14、(12分)某通信公司策划了两种上网的月收费方式:
设每月上网时间为,方式的收费金额分别为(元),(元),如图是与之间函数关系的图象.(友情提示:若累计上网时间不超出包时上网时间,则只收月使用费;若累计上网时间超出包时上网时间,则对超出部分再加收超时费)
(1) , , ;
(2)求与之间的函数解析式;
(3)若每月上网时间为31小时,请直接写出选择哪种方式能节省上网费.
15、(8分)我省松原地震后,某校开展了“我为灾区献爱心”捐款活动,八年级一班的团支部对全班50人捐款数额进行了统计,绘制出如下的统计图.
(1)把统计图补充完整;
(2)直接写出这组数据的中位数;
16、(8分)在“3.15”植树节活动后,对栽下的甲、乙、丙、丁四个品种的树苗进行成活率观测,以下是根据观测数据制成的统计图表的一部分:
若经观测计算得出丙种树苗的成活率为89.6%,请你根据以上信息解答下列问题:
(1)这次栽下的四个品种的树苗共 棵,乙品种树苗 棵;
(2)图1中,甲 %、乙 %,并将图2补充完整;
(3)求这次植树活动的树苗成活率.
17、(10分)如图(1) ,折叠平行四边形,使得分别落在边上的点,为折痕
(1)若,证明:平行四边形是菱形;
(2)若 ,求的大小;
(3)如图(2) ,以为邻边作平行四边形,若,求的大小
18、(10分)如图,在□ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.
(1)求证:四边形BFDE是矩形
(2)若CF=6,BF=8,DF=10,求证:AF是∠DAB的平分线.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,DE为Rt△ABC的中位线,点F在DE上,且∠AFB=∠BAC=90°,若AB=4,AC=8,则EF的长为____.(结果保留根号)
20、(4分)分解因式:2m2-8=_______________.
21、(4分)若关于x的分式方程=+2有正整数解,则符合条件的非负整数a的值为_____.
22、(4分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若CD=BD,点D到边AB的距离为6,则BC的长是____.
23、(4分)如图,在平面直角坐标系xOy中,点A1,A2,A3,…分别在x轴上,点B1,B2,B3,…分别在直线y=x上,△OA1B1,△B1A1A2,△B1B2A2,△B2A2A3,△B2B3A3…,都是等腰直角三角形,如果OA1=1,则点A2019的坐标为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,P是菱形ABCD对角线AC上的一点,点E在BC的延长线上,且PE=PB
(1)求证:PD=PE;
(2)求证:∠DPE=∠ABC;
(3)如图2,当四边形ABCD为正方形时,连接DE,试探究线段DE与线段BP的数量关系,并说明理由.
25、(10分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,且BC=2AF。
(1)求证:四边形ADEF为矩形;
(2)若∠C=30°、AF=2,写出矩形ADEF的周长。
26、(12分)知y+3与5x+4成正比例,当x=1时,y=—18,
(1)求y关于x的函数关系。
(2)若点(m,—8)在此图像上,求m的值。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
首先根据x的范围确定x−3与x−2的符号,然后即可化简二次根式,然后合并同类项即可.
【详解】
∵,
∴x−3<0,x−2<0,
∴=3−x+(2−x)=5−2x.
故选:C.
本题主要考查了二次根式的化简,化简时要注意二次根式的性质:=|a|.
2、D
【解析】
连结PP′,如图,先根据旋转的性质得BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,则可判断△PBP′为等腰直角三角形,于是有∠BPP′=45°,PP′=PB=2,然后根据勾股定理的逆定理证明△APP′为直角三角形,得到∠APP′=90°,所以∠BPA=∠BPP′+∠APP′=135°,则∠BP′C=135°.
【详解】
解:连结PP′,如图,
∵四边形ABCD为正方形,
∴∠ABC=90°,BA=BC,
∴△ABP绕点B顺时针旋转90°得到△CBP′,
∴BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,
∴△PBP′为等腰直角三角形,
∴∠BPP′=45°,PP′=PB=2,
在△APP′中,∵PA=1,PP′=2,AP′=3,
∴PA2+PP′2=AP′2,
∴△APP′为直角三角形,∠APP′=90°,
∴∠BPA=∠BPP′+∠APP′=45°+90°=135°,
∴∠BP′C=135°.
故选D.
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质和勾股定理的逆定理.
3、D
【解析】
根据勾股定理求出AC2+BC2,根据正方形的面积公式进行计算即可.
【详解】
在Rt△ABC中,AC2+BC2=AB2=169,
则正方形与正方形的面积和= AC2+BC2 =169,
故选D.
本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.
4、C
【解析】
将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,
∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=11,
∴得出S1=8y+x,S2=4y+x,S3=x,
∴S1+S2+S3=3x+12y=11,即3x+12y=11,x+4y=1,
所以S2=x+4y=1,
故答案为1.
点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y表示出S1,S2,S3,再利用S1+S2+S3=11求解是解决问题的关键.
5、A
【解析】
根据因式分解的定义:将一个多项式化为几个整式乘积的形式叫做因式分解,也叫分解因式,对每个选项逐一判断即可.
【详解】
解:A. 10x2-5x=5x(2x-1),符合定义,属于分解因式,故A正确
B. a2-b2-c2=(a-b)(a+b)-c2,不符合定义,故B错误;
C. a(m+n)=am+an,属于整式的乘法,故C错误;
D. 2x2-4y+2=2(x2-2y+1),故D错误,
故答案为:A.
本题考查了因式分解的概念,判断是否为因式分解的问题,解题的关键是掌握因式分解的概念.
6、C
【解析】
在 中,
在 中,
在 中,
在 中,
根据相似三角形的判定,,故选C.
7、B
【解析】
试题解析:A.()2+()2≠()2,故该选项错误;
B.12+()2=()2,故该选项正确;
C.62+72≠82,故该选项错误;
D.22+32≠42,故该选项错误.
故选B.
考点:勾股定理.
8、D
【解析】
先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的310°,从而可代入公式求解.
【详解】
解:设多边形的一个内角为2x度,则一个外角为x度,依题意得
2x+x=180°,
解得x=10°.
310°÷10°=1.
故这个多边形的边数为1.
故选D.
本题考查了多边形的内角与外角关系、方程的思想,记住多边形的一个内角与外角互补、及外角和的特征是关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
先由平均数的公式计算出x的值,再根据方差的公式计算即可.
【详解】
解:∵数据6,x,1,3,4的平均数是4,
∴(6+x+1+3+4)÷5=4,
解得:x=5,
∴这组数据的方差是[(6-4)1+(5-4)1+(1-4)1+(3-4)1+(4-4))1]=1;
故答案为:1.
本题考查方差的定义与意义:一般地设n个数据,x1,x1,…xn的平均数和方差,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.
10、﹣1
【解析】
首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.
【详解】
原式=﹣8+1+1+3=﹣1.
故答案为:﹣1.
本题考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题的关键.
11、2.4
【解析】
根据已知得出四边形AEPF是矩形,得出EF=AP,要使EF最小,只要AP最小即可,根据垂线段最短得出即可.
【详解】
连接AP,
∵∠A=90°,PE⊥AB,PF⊥AC,
∴∠A=∠AEP=∠AFP=90°,
∴四边形AFPE是矩形,
∴EF=AP,
要使EF最小,只要AP最小即可,
过A作AP⊥BC于P,此时AP最小,
在Rt△BAC中,∠A=90°,AC=4,AB=3,由勾股定理得:BC=5,
由三角形面积公式得:12×4=12×5×AP,
∴AP=2.4,
即EF=2.4
此题考查勾股定理,矩形的判定与性质,解题关键在于得出四边形AEPF是矩形
12、m≤1
【解析】
根据不等式组解集的求法解答.求不等式组的解集.
【详解】
不等式组的解集是x>1,得:m≤1.
故答案为m≤1.
本题考查了不等式组解集,求不等式组的解集,解题的关键是注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
13、乙
【解析】
根据方差的定义,方差越小数据越稳定即可得出答案.
【详解】
解:两队队员身高平均数均为1.85米,方差分别为,,
,
身高较整齐的球队是乙队;
故答案为:乙.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
三、解答题(本大题共5个小题,共48分)
14、(1)45,50,0.05;(2);(3)若每月上网的时间为31小时,选择方式B能节省上网费.
【解析】
(1)根据函数图象可以得到m、n的值,然后根据15小时花费45元可以求得p的值;
(2)根据表格中的数据可以求得与x之间的函数关系式;
(3)当时,分别求出两种方式下的费用,然后比较大小即可解答本题.
【详解】
解:(1)由函数图象可得,
,,,
故答案为:45,50,;
(2)当时,,
当时,,
综上所述:;
(3)当时,
,
,
,
若每月上网的时间为31小时,选择方式B能节省上网费.
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,求出相应的函数解析式,利用函数的性质解答.
15、(1)见解析;(2)20.
【解析】
(1)求得捐款金额为30元的学生人数,把统计图补充完整即可.
(2)根据中位数和众数的定义解答;
【详解】
解:(1)捐款金额为30元的学生人数=50-6-15-19-2=8(人),
把统计图补充完整如图所示;
(2)数据总数为50,所以中位数是第25、26位数的平均数,即(20+20)÷2=20.
本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.除此之外,本题也考查了中位数的认识.
16、(1)500,100;(2)30,20,补图见解析;(3)这次植树活动的树苗成活率为89.8%.
【解析】
(1)根据丙种植树125棵,占总数的25%,即可求得总棵树,然后求得乙种的棵树;
(2)利用百分比的意义即可求得甲和乙所占的百分比,以及成活率;
(3)求得成活的总棵树,然后根据成活率的定义求解.
【详解】
(1)这次栽下的四个品种的树苗总棵树是:125÷25%=500(棵),则乙品种树苗的棵树是:500−150−125−125=100(棵),故答案为:500,100;
(2)甲所占的百分比是:×100%=30%,乙所占的百分比是:×100%=20%,丙种成活的棵树:125×89.6%=112(棵).故答案为:30,20.
(3)成活的总棵树是:135+85+112+117=449(棵),所以这次植树活动的树苗成活率为=89.8%.
本题考查统计表、扇形统计图和条形统计图,解题的关键是读懂统计表、扇形统计图和条形统计图中的信息.
17、(1)详见解析;(2)30°;(3)45°.
【解析】
(1)利用面积法解决问题即可.
(2)分别求出∠BAD,∠BAB′,∠DAD′即可解决问题.
(3)如图2中,延长AE到H,使得EH=EA,连接CH,HG,EF,AC.想办法证明E,H,G,C四点共圆,可得∠EGC=∠EHC=45°.
【详解】
(1)证明:如图1中,
∵四边形ABCD是平行四边形,AE⊥BC,AF⊥CD,
∴S平行四边形ABCD=BC•AE=CD•AF,
∵AE=AF,
∴BC=CD,
∴平行四边形是菱形;
(2)解:如图1中,
∵四边形ABCD是平行四边形,
∴∠C=∠BAD=110°,
∵AB∥CD,
∴∠C+∠B=180°,
∴∠B=∠D=70°,
∵AE⊥BC,AF⊥CD.
∴∠AEB=∠AFD=90°,
∴∠BAE=∠DAF=20°,
由翻折变换的性质可知:∠BAB′=2∠BAE=40°,∠DAD′=2∠DAF=40°,
∴∠B′AD′=110°﹣80°=30°.
(3)解:如图2中,延长AE到H,使得EH=EA,连接CH,HG,EF,AC.
∵EA=EC,∠AEC=90°,
∴∠ACE=45°,
∵∠AEC+∠AFC=180°,
∴A,B,C,F四点共圆,
∴∠AFE=∠ACE=45°,
∵四边形AEGF是平行四边形,
∴AF∥EG,AE=FG,
∴∠AFE=∠FEG=45°,
∴EH=AE=FG,EH∥FG,
∴四边形EHGF是平行四边形,
∴EF∥HG,
∴∠FEG=∠EGH=45°
∵EC=AE=EH,∠CEH=90°,
∴∠ECH=∠EHC=45°,
∴∠ECH=∠EGH,
∴E,H,G,C四点共圆,∠EGC=∠EHC=45°.
本题属于几何变换综合题,考查了平行四边形的性质和判定,菱形的判定,翻折变换,四点共圆,圆周角定理等知识,解题的关键是学会添加常用辅助线,利用四点共圆解决问题,属于中考压轴题.
18、见解析
【解析】
分析:(1)由平行四边形的性质和已知条件得出BE=DF,证明四边形BFDE为平行四边形,再由DE⊥AB,即可得出结论;
(2)由矩形的性质和勾股定理求出BC,得出AD=BC=DF,证出∠DAF=∠DFA,再由平行线的性质即可得出结论.
详解:证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
∵CF=AE,
∴BE=DF.∴四边形BFDE为平行四边形.
∵DE⊥AB,
∴∠DEB=90°
.∴四边形BFDE是矩形.
(2)∵四边形BFDE是矩形,
∴∠BFD=90°.
∴∠BFC=90°
.在Rt△BFC中,由勾股定理得BC==10.
∴AD=BC=10.
又∵DF=10,
∴AD=DF
.∴∠DAF=∠DFA.
∵AB∥CD,
∴∠DFA=∠FAB.
∴∠DAF=∠FAB.
∴AF是∠DAB的平分线.
点睛:本题考查了平行四边形的性质、矩形的判定与性质、勾股定理、等腰三角形的判定;熟练掌握平行四边形的性质,证明四边形BFDE是矩形是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
首先在Rt△ABC中,由勾股定理求出BC的长,然后利用中位线定理求出DE的长,再利用直角三角形斜边上的中线等于斜边的一半求出DF的长,进而求出EF的长.
【详解】
∵∠BAC=90°,AB=4,AC=8,
∴BC===
∵DE为Rt△ABC的中位线,
∴DE=BC=,
∵∠AFB=90º,
∴DF=AB=2,
∴EF=DE-DF=,
故答案为:.
本题主要考查三角形的基本概念和直角三角形的性质,掌握直角三角形的性质是解答本题的关键.
20、2(m+2)(m-2)
【解析】
先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.
【详解】
2m2-8,
=2(m2-4),
=2(m+2)(m-2)
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解.
21、1
【解析】
先解分式方程得x=,由分式方程有正整数解,得出a+1=4,或a+1=1,且a≠0,解出a的值,最后根据a为非负整数即可得出答案.
【详解】
解:方程两边同时乘以x﹣1,得:
3﹣ax=3+1(x﹣1),
解得x=,
∵是正整数,且≠1,
∴a+1=4,或a+1=1,且a≠0,
a=1或a=-1(不符合题意,舍去)
∴非负整数a的值为:1,
故答案为:1.
本题考查了解分式方程,注意不要漏掉分母不能为零的情况.
22、2
【解析】
过D作DE⊥AB于E,则DE=1,根据角平分线性质求出CD=DE=1,求出BD即可.
【详解】
过D作DE⊥AB于E.
∵点D到边AB的距离为1,∴DE=1.
∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=1.
∵CDDB,∴DB=12,∴BC=1+12=2.
故答案为2.
本题考查了角平分线性质的应用,注意:角平分线上的点到这个角的两边的距离相等.
23、(22018,0)
【解析】
根据OA1=1,△OA1B1是等腰直角三角形,得到A1和B1的横坐标为1,根据点A1在直线y=x上,得到点B1的纵坐标,结合△B1A1A2为等腰直角三角形,得到A2和B2的横坐标为1+1=2,同理:A3和B3的横坐标为2+2=4=22,A4和B4的横坐标为4+4=8=23,…依此类推,即可得到点A2019的横坐标,即可得到答案.
【详解】
根据题意得:
A1和B1的横坐标为1,
把x=1代入y=x得:y=1
B1的纵坐标为1,
即A1B1=1,
∵△B1A1A2为等腰直角三角形,
∴A1A2=1,
A2和B2的横坐标为1+1=2,
同理:A3和B3的横坐标为2+2=4=22,
A4和B4的横坐标为4+4=8=23,
…
依此类推,
A2019的横坐标为22018,纵坐标为0,
即点A2019的坐标为(22018,0),
故答案为:(22018,0).
此题考查了一次函数的性质,等腰直角三角形的性质;此题是一道规律型的试题,锻炼了学生归纳总结的能力,灵活运用等腰直角三角形的性质是解本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)详见解析;(3)DE=BP,理由详见解析
【解析】
(1)根据菱形的性质得出BC=DC,∠BCP=∠DCP,然后利用“边角边”证明△BCP≌△DCP得出PB=PD,由已知PE=PB,即可得出结论;
(2)根据全等三角形对应角相等可得∠CBP=∠CDP,根据等边对等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得证;
(3)证出△PDE是等腰直角三角形,由等腰直角三角形的性质得出DE=PE,即可得出结论.
【详解】
(1)证明:∵四边形ABCD是菱形,
∴BC=DC,∠BCP=∠DCP,AB∥DC,
∵在△BCP和△DCP中,
,
∴△BCP≌△DCP(SAS),
∴PB=PD,
∵PE=PB,
∴PD=PE;
(2)证明:如图1所示:
由(1)知,△BCP≌△DCP,
∴∠CBP=∠CDP,
∵PE=PB,
∴∠CBP=∠E,
∵∠CFE=∠DFP(对顶角相等),
∴180°-∠DFP-∠CDP=180°-∠CFE-∠E,
即∠DPE=∠DCE,
∵AB∥CD,
∴∠DCE=∠ABC,
∴∠DPE=∠ABC;
(3)解:DE=BP,理由如下:
∵四边形ABCD是正方形,
∴∠ABC=90°,
由(1)知:PD=BP=PE,
由(2)知,∠DPE=∠ABC=90°,
∴△PDE是等腰直角三角形,
∴DE=PE,
∴DE=BP.
本题是四边形综合题目,考查了菱形的性质、正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的性质等知识;本题综合性强,熟记菱形和正方形的性质,证明三角形全等是解题的关键.
25、(1)证明见解析 (2)
【解析】
(1)连接DE.根据三角形的中位线的性质即可得到结论;
(2)根据矩形的性质得到∠BAC=∠FEC=90°,解直角三角形即可得到结论.
【详解】
(1)连接DE,
∵E、F分别是AC,BC中点
∴EF//AB,EF=AB
∵点D是AB中点
∴AD=AB,AD=EF
∴四边形ADFE为平行四边形
∵点D、E分别为AB、AC中点
∴DE=BC,
∵BC=2AF
∴DE=AF
∴四边形ADEF为矩形.
(2)∵四边形ADFE是矩形,
∴∠BAC=∠FEC=90°,
∵AF=2,F为BC中点,
∴BC=4,CF=2,
∵∠C=30°
∴AC=,CE=,EF=1,
∴AE=
∴矩形ADEF的周长为;
本题考查三角形中位线定理及应用,矩形的判定和性质,学生应熟练掌握以上定理即可解题.
26、 (1) y=x;
(2) m=.
【解析】
(1)设y+3=k(5x+4),把x=1,y=-18代入求出k的值,进而可得出y与x的函数关系式;
(2)直接把点(m,-8)代入(1)中一次函数的解析式即可.
【详解】
(1)∵y+3与5x+4成正比例,
∴设y+3=k(5x+4),
∵当x=1时,y=−18,
∴−18+3=k(5+4),解得k=,
∴y关于x的函数关系式为: (5x+4)=y+3,即y=x;
(2)∵点(m,−8)在此图象上,
∴−8=m,解得m=.
本题考查一次函数,解题的关键是掌握待定系数法求解析式.
题号
一
二
三
四
五
总分
得分
批阅人
收费方式
月使用费/元
包时上网时间/
超时费/(元/)
30
25
0.05
栽下的各品种树苗棵数统计表
植树品种
甲种
乙种
丙种
丁种
植树棵数
150
125
125
2024年陕西省宝鸡市金台区金河中学九年级数学第一学期开学质量跟踪监视试题【含答案】: 这是一份2024年陕西省宝鸡市金台区金河中学九年级数学第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山西省晋中学市数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024年山西省晋中学市数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年海南省九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024年海南省九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。