2024年商洛市重点中学数学九年级第一学期开学经典模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)不等式3x<﹣6的解集是( )
A.x>﹣2B.x<﹣2C.x≥﹣2D.x≤﹣2
2、(4分)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是( )
A.50°B.60°C.40°D.30°
3、(4分)如图,□ABCD的对角线AC与BD相交于点O,AB⊥AC.若,,则BD的长为( )
A.B.C.D.
4、(4分)下列计算正确的是( )
A.=﹣3B.C.5×5=5D.
5、(4分)如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为( )
A.–B.C.–2D.2
6、(4分)下列各组长度的线段中,可以组成直角三角形的是( )
A.1,2,3B.1,,3C.5,6,7D.5,12,13
7、(4分)已知等腰三角形的一个角为72度,则其顶角为( )
A.B.
C.D.或
8、(4分)如图,点A、B、C在一次函数y=3x+m的图象上,它们的横坐标依次为﹣2,﹣1,1,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是( )
A.B.3C.3(m+1)D.(m+1)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在函数中,自变量的取值范围是________.
10、(4分)如图所示,数轴上点A所表示的数为a,则a的值是____.
11、(4分)如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__________.
12、(4分)若在实数范围内有意义,则的取值范围为_________________.
13、(4分)函数y=中,自变量x的取值范围是___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知一次函数 y=kx+b(k≠0)的图象经过点(2,-3)和(-1,3).
(1)求这个一次函数的关系式;
(2)画出这个一次函数的图象.
15、(8分)观摩、学习是我们生活的一部分,而在观摩中与展览品保持一定的距离是一种文明的表现.某学校数学业余学习小组在平面直角坐标系xOy有关研讨中,将到线段PQ所在的直线距离为的直线,称为直线PQ的“观察线”,并称观察线上到P、Q两点距离和最小的点L为线段PQ的“最佳观察点”.
(1)如果P(1,),Q(4,),那么在点A(1,0),B(,2),C(,3)中,处在直线PQ的“观察线”上的是点 ;
(2)求直线y=x的“观察线”的表达式;
(3)若M(0,﹣1),N在第二象限,且MN=6,当MN的一个“最佳观察点”在y轴正半轴上时,直接写出点N的坐标;并按逆时针方向联结M、N及其所有“最佳观察点”,直接写出联结所围成的多边形的周长和面积.
16、(8分)为了有效地落实国家精准扶贫政策,切实关爱贫困家庭学生.某校对全校各班贫困家庭学生的人数情况进行了调查.发现每个班级都有贫困家庭学生,经统计班上贫困家庭学生人数分别有1名、2名、3名、5名,共四种情况,并将其制成了如下两幅不完整的统计图:
(1)填空:a = ,b= ;
(2)求这所学校平均每班贫困学生人数;
(3)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表或画树状图的方法,求出被选中的两名学生来自同一班级的概率.
17、(10分)计算:4(﹣)﹣÷+(+1)1.
18、(10分)已知,,,求的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第5幅图中有______个正方形.
20、(4分)约分:_______.
21、(4分)如图中的虚线网格为菱形网格,每一个小菱形的面积均为1,网格中虚线的交点称为格点,顶点都在格点的多边形称为格点多边形,如:格点▱ABCD的面积是1.
(1)格点△PMN的面积是_____;
(2)格点四边形EFGH的面积是_____.
22、(4分)直角三角形的两直角边是3和4,则斜边是____________
23、(4分)平面直角坐标系中,点A在函数 (x>0)的图象上,点B在 (x<0)的图象上,设A的横坐标为a,B的横坐标为b,当|a|=|b|=5时,求△OAB的面积为____;
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,在△ABC中,∠ACB=90°,点D是斜边AB的中点,DE∥BC,且CE=CD.
(1)求证:∠B=∠DEC;
(2)求证:四边形ADCE是菱形.
25、(10分)小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.
(1)根据函数的定义,请判断变量h是否为关于t的函数?
(2)结合图象回答:
①当t=0.7s时,h的值是多少?并说明它的实际意义.
②秋千摆动第一个来回需多少时间?
26、(12分)如图,是由边长为1的小正方形组成的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形,图中已给出△ABC的一边AB的位置.
(1)请在所给的网格中画出边长分别为2,,4的一个格点△ABC;
(2)根据所给数据说明△ABC是直角三角形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据不等式的性质在不等式的两边同时除以3即可求出x的取值范围.
【详解】
在不等式的两边同时除以3得:x<-1.
故选:B.
本题考查了解简单不等式的能力,解不等式依据的是不等式的基本性质:
(1)不等式的两边同时加上(或减去)同一个数(或整式),不等号的方向不变;
(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;
(3)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.
2、A
【解析】
根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于80°,则可以利用三角形内角和度数为180°列出式子进行求解.
【详解】
解:∵将△OAB绕点O逆时针旋转80°
∴∠A=∠C,∠AOC=80°
∴∠DOC=80°﹣α
∵∠A=2∠D=100°
∴∠D=50°
∵∠C+∠D+∠DOC=180°
∴100°+50°+80°﹣α=180° 解得α=50°
故选:A.
本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.
3、B
【解析】
根据勾股定理先求出BO的长,再根据平行四边形的性质即可求解.
【详解】
∵,
∴AO=3,
∵AB⊥AC,
∴BO==5
∴BD=2BO=10,
故选B.
此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.
4、D
【解析】
根据二次根式的性质对A进行判断;根据二次根式的加减运算对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.
【详解】
A、原式=3,所以A选项错误;
B、与不能合并,所以B选项错误;
C、原式=25,所以C选项错误;
D、原式==2,所以D选项正确.
故选D.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
5、A
【解析】
【分析】根据已知可得点C的坐标为(-2,1),把点C坐标代入正比例函数解析式即可求得k.
【详解】∵A(-2,0),B(0,1),
∴OA=2,OB=1,
∵四边形OACB是矩形,
∴BC=OA=2,AC=OB=1,
∵点C在第二象限,∴C点坐标为(-2,1),
∵正比例函数y=kx的图像经过点C,
∴-2k=1,
∴k=-,
故选A.
【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C的坐标是解题的关键.
6、D
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.
【详解】
A、12+22≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;
B、12+()2≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;
C、52+62≠72,根据勾股定理的逆定理不是直角三角形,故此选项错误;
D、52+122=132,根据勾股定理的逆定理是直角三角形,故此选项正确.
故选:D.
此题考查勾股定理的逆定理,解题关键在于在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
7、D
【解析】
分两种情况讨论:72度为顶角或为底角,依次计算即可.
【详解】
分两种情况:
①72度为顶角时,答案是72°;
②72度为底角时,则顶角度数为180°-72×2=36°.
故选D.
本题主要考查了等腰三角形的性质,已知提供的度数并没有说明其为底角还是顶角,所以需要分类讨论解决.
8、A
【解析】
利用A、B、C以及直线与y轴交点这4个点的坐标来分别计算阴影部分的面积,可将m看做一个常量.
【详解】
解:将A、B、C的横坐标代入到一次函数中;
解得A(﹣2,m﹣6),B(﹣1,m﹣3),C(1,m+3).
由一次函数的性质可知,三个阴影部分三角形全等,底边长为2﹣1=1,高为(m﹣3)﹣(m﹣6)=3,
可求得阴影部分面积为:S=,
故选:A.
本题考查的是一次函数图象上点的坐标特点,图中阴影是由3个全等直角三角形组成,解题过程中只要计算其中任意一个即可.同时,还可把未知量m当成一个常量来看.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x≠1
【解析】
根据分式有意义的条件,即可求解.
【详解】
∵在函数中,x-1≠0,
∴x≠1.
故答案是:x≠1.
本题主要考查函数的自变量的取值范围,掌握分式的分母不等于零,是解题的关键.
10、
【解析】
根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标.
【详解】
∵直角三角形的两直角边为1,2,
∴斜边长为,
那么a的值是:﹣.
故答案为.
此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离.
11、
【解析】
根据题意可得阴影部分的面积等于△ABC的面积,因为△ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积.
【详解】
设AP,EF交于O点,
∵四边形ABCD为菱形,
∴BC∥AD,AB∥CD.
∵PE∥BC,PF∥CD,
∴PE∥AF,PF∥AE.
∴四边形AEFP是平行四边形.
∴S△POF=S△AOE.
即阴影部分的面积等于△ABC的面积.
∵△ABC的面积等于菱形ABCD的面积的一半,
菱形ABCD的面积=ACBD=5,
∴图中阴影部分的面积为5÷2=.
12、
【解析】
根据根式有意义的条件,得到不等式,解出不等式即可
【详解】
要使有意义,则需要,解出得到
本题考查根式有意义的条件,能够得到不等式是解题关键
13、且x≠−1.
【解析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,列不等式求解.
【详解】
根据题意,可得
且x+1≠0;
解得且x≠−1.
故答案为且x≠−1.
考查函数自变量的取值范围,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)y=-2x+1;(2)见解析.
【解析】
(1)将点(2,-3)和(-1,3)代入y=kx+b,运用待定系数法即可求出该一次函数的解析式;
(2)经过两点(2,-3)和(-1,3)画直线,即可得出这个一次函数的图象;
【详解】
解:(1)∵一次函数y=kx+b(k≠0)的图象经过点(2,-3)和(-1,3),
∴;解得:
∴该一次函数的解析式为y=-2x+1;
(2)如图,经过两点(2,-3)和(-1,3)画直线,
即为y=-2x+1的图象;
本题主要考查了运用待定系数法求一次函数的解析式,一次函数的性质,属于基础知识,利用图象与坐标交点作出图象是解题关键,同学们应熟练掌握.
15、 (1)A,B; (1)直线y=x的“观察线”的解析式为y=x﹣1或y=x+1;(3)围成的图形是菱形MQNQ′,这个菱形的周长8,这个菱形的面积6.
【解析】
(1)由题意线段PQ的“观察线”的解析式为y=0或y=1,由此即可判断;
(1)如图1中,设直线的下方的“观察线”MN交y轴于K,作KE⊥直线,求出直线MN的解析式,再根据对称性求出直线的上方的“观察线”PQ即可;
(3)如图3中,设点Q是MN的一个“最佳观察点”,点P是MN的中点.解直角三角形求出点P坐标,再根据中点坐标公式求出等N坐标;观察图象可知:设此时的另一个“最佳观察点”为Q′,按逆时针方向联结M、N及其所有“最佳观察点”,所围成的图形是菱形MQNQ′,这个菱形的周长=8,这个菱形的面积==×6×1=6.
【详解】
(1)如图1中,
由题意线段PQ的“观察线”的解析式为y=0或y=1,
∵点A在直线y=0上,点B在直线y=1上,
∴点A,点B是直线PQ的“观察线”上的点,
故答案为A,B.
(1)如图1中,设直线y=x的下方的“观察线”MN交y轴于K,作KE⊥直线y=x,
由题意:EK=,
∵直线y=x与x轴的夹角为30°,
∴∠EOK=60°,
∴∠EKO=30°,
∴tan30°==,
∴OE=1,
∴OK=1OE=1,
∵MN∥直线y=x,
∴直线MN的解析式为y=x﹣1,
根据对称性可知在直线y=x上方的“观察线”PQ的解析式为y=x+1.
综上所述,直线y=x的“观察线”的解析式为y=x﹣1或y=x+1.
(3)如图3中,设点Q是MN的一个“最佳观察点”,点P是MN的中点.
当点Q在y轴的正半轴上时,连接PQ,则PQ垂直平分线线段MN.
在Rt△PQM中,PQ=,PM=3,
∴MQ==1,
∵M(0,﹣1),
OQ=1﹣1,
作PH⊥y轴于H.
在Rt△PQH中,∵tan∠PQH==,
∴∠PQH=60°,
∴∠QPH=30°,
∴QH=PQ=,PH=QH=,
∴OH=1﹣1﹣=﹣1,
∴P(﹣,﹣1),
∵PN=PM,
∴N(﹣3,3﹣1).
观察图象可知:设此时的另一个“最佳观察点”为Q′,按逆时针方向联结M、N及其所有“最佳观察点”,所围成的图形是菱形MQNQ′,这个菱形的周=8,这个菱形的面积=×6×1=6.
本题考查一次函数综合题、点到直线的距离、轨迹、解直角三角形等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题.
16、 (1) a=2,b=10;(2)2;(3).
【解析】
(1)利用扇形图以及统计表,即可解决问题;
(2)根据平均数的定义计算即可;
(3)列表分析即可解决问题.
【详解】
(1)由题意a=2,b=10%.
故答案为2,10%;
(2)这所学校平均每班贫困学生人数2(人);
(3)根据题意,将两个班级4名学生分别记作A1、A2、B1、B2,列表如下:
由上表可知,从这两个班级任选两名学生进行帮扶共有12种等可能结果,其中被选中的两名学生来自同一班级的有4种结果,∴被选中的两名学生来自同一班级的概率为.
本题考查了条形统计图和扇形统计图、树状图的画法以及规律公式;读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
17、1﹣6.
【解析】
先根据二次根式的乘除法则和完全平方公式计算,然后合并即可.
【详解】
原式=4﹣4﹣+3+1+1
=1﹣8﹣4+4+1
=1﹣6.
故答案为:1﹣6.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
18、78.
【解析】
原式提取公因式,再利用完全平方公式化简,将已知等式代入计算即可求出值.
【详解】
把,代入得:
此题考查了因式分解-提公因式法,熟练掌握因式分解的方法是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、55
【解析】
观察图形,找到正方形的个数与序数之间的关系,从而得出第5幅图中正方形的个数.
【详解】
解:∵第1幅图中有1个正方形,
第2幅图中有1+4=5个正方形,
第3幅图中有1+4+9=14个正方形,
∴第4幅图中有12+22+32+42=30个正方形,
第5幅图中有12+22+32+42+52=55个正方形.
故答案为:55.
本题考查查图形的变化规律,能根据图形之间的变化规律,得出正方形个数与序数之间的规律是解决此题的关键.
20、
【解析】
根据分式的基本性质,分子分母同时除以公因式3ab即可。
【详解】
解:分子分母同时除以公因式3ab,得:
故答案为:
本题考查了分式的基本性质的应用,分式的约分找到分子分母的公因式是关键,是基础题。
21、1 2
【解析】
解:(1)如图,S△PMN=•S平行四边形MNEF=×12=1.故答案为1.
(2)S四边形EFGH=S平行四边形LJKT﹣S△LEH﹣S△HTG﹣S△FKG﹣S△EFJ=10﹣2﹣9﹣1﹣15=2.故答案为2.
故答案为1,2.
点睛:本题考查了菱形的性质、平行四边形的性质等知识,解题的关键是学会用分割法求面积,属于中考常考题型.
22、1
【解析】
在直角三角形中,已知两直角边根据勾股定理可以计算斜边.
【详解】
在直角三角形中,三边边长符合勾股定理,
已知两直角边为3、4,则斜边边长==1,
故答案为 1.
本题考查了直角三角形中的运用,本题中正确的运用勾股定理求斜边的长是解题的关键.
23、2
【解析】
根据已知条件可以得到点A、B的横坐标,则由反比例函数图象上点的坐标特征易求点O到直线AB的距离,所以根据三角形的面积公式进行解答即可;
【详解】
)∵a>0,b<0,当|a|=|b|=5时,
可得A(5, ),B(−5, ),
∴S△OAB=×10×=2;
此题考查反比例函数,解题关键在于得到点A、B的横坐标
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)证明见解析.
【解析】
(1)根据直角三角形斜边上的中线等于斜边的一半,得到DB=DC,从而∠B=∠DCB,由DE∥BC,得到∠DCB=∠CDE,由CE=CD,得到∠CDE=∠DEC,利用等量代换,得到∠B=∠DEC;
(2)先利用一组对边平行且相等的四边形是平行四边形,证明四边形ADCE是平行四边形,再由CD=CE,证明平行四边形ADCE是菱形.
【详解】
(1)证明:在△ABC中,∵∠ACB=90°,点D是斜边AB的中点,
∴CD=DB,
∴∠B=∠DCB,
∵DE∥BC,
∴∠DCB=∠CDE,
∵CD=CE,
∴∠CDE=∠CED,
∴∠B=∠CED.
(2)证明:∵DE∥BC,
∴∠ADE=∠B,
∵∠B=∠DEC,
∴∠ADE=∠DEC,
∴AD∥EC,
∵EC=CD=AD,
∴四边形ADCE是平行四边形,
∵CD=CE,
∴四边形ADCE是菱形.
故答案为:(1)证明见解析;(2)证明见解析.
本题考查了直角三角形的性质,菱形的判定.
25、(1)变量h是关于t的函数;(2)2.8s
【解析】
【分析】根据函数的定义进行判断即可.
①当时,根据函数的图象即可回答问题.
②根据图象即可回答.
【解答】(1)∵对于每一个摆动时间,都有一个唯一的的值与其对应,
∴变量是关于的函数.
(2)①,它的实际意义是秋千摆动时,离地面的高度为.
②.
【点评】本题型旨在考查学生从图象中获取信息、用函数的思想认识、分析和解决问题的能力.
26、(1)画图见解析;(2)证明见解析
【解析】试题分析(1) 利用勾股定理即可作出边长为2,,4的一个格点△ABC;(2)根据勾股定理得逆定理即可证明.
试题解析:(1)如图所示:
(2)由图可知,AB=4,BC=2,AC=,
∵AB2+BC2=20,AC2=20,
∴AB2+BC2=AC2,
∴△ABC是直角三角形.
题号
一
二
三
四
五
总分
得分
批阅人
贫困学生人数
班级数
1名
5
2名
2
3名
a
5名
1
2024年洛阳市重点中学数学九年级第一学期开学综合测试模拟试题【含答案】: 这是一份2024年洛阳市重点中学数学九年级第一学期开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建省重点中学数学九年级第一学期开学综合测试模拟试题【含答案】: 这是一份2024年福建省重点中学数学九年级第一学期开学综合测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年北京市清华大附属中学数学九年级第一学期开学经典模拟试题【含答案】: 这是一份2024年北京市清华大附属中学数学九年级第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。