|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年绍兴市重点中学数学九上开学学业质量监测模拟试题【含答案】
    立即下载
    加入资料篮
    2024年绍兴市重点中学数学九上开学学业质量监测模拟试题【含答案】01
    2024年绍兴市重点中学数学九上开学学业质量监测模拟试题【含答案】02
    2024年绍兴市重点中学数学九上开学学业质量监测模拟试题【含答案】03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年绍兴市重点中学数学九上开学学业质量监测模拟试题【含答案】

    展开
    这是一份2024年绍兴市重点中学数学九上开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)的三边长分别为,下列条件:①;②;③;④其中能判断是直角三角形的个数有( )
    A.个B.个C.个D.个
    2、(4分)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是
    A.50(1+x2)=196B.50+50(1+x2)=196
    C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=196
    3、(4分)如图所示,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A'点,连接A'B,则线段A'B与线段AC的关系是 ( )
    A.垂直B.相等C.平分D.平分且垂直
    4、(4分)甲、乙两人分别骑自行车和摩托车从A地到B地,两人所行驶的路程与时间的关系如图所示,下面的四个说法:
    甲比乙早出发了3小时;乙比甲早到3小时;甲、乙的速度比是5:6;乙出发2小时追上了甲.
    其中正确的个数是
    A.1个B.2个C.3个D.4个
    5、(4分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所用的时间与原计划生产450台机器所用的时间相同.若设原计划平均每天生产x台机器,则可列方程为( )
    A.=B.=C.=D.=
    6、(4分)下列计算中,正确的是( )
    A.B.
    C.D.
    7、(4分)一同学将方程化成了的形式,则m、n的值应为( )
    A.m=1.n=7B.m=﹣1,n=7C.m=﹣1,n=1D.m=1,n=﹣7
    8、(4分)方程的解是( )
    A.4B.±2C.2D.-2
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在学校的社会实践活动中,一批学生协助搬运初一、二两个年级的图书,初一年级需要搬运的图书数量是初二年级需要搬运的图书数量的两倍.上午全部学生在初一年级搬运,下午一半的学生仍然留在初一年级(上下午的搬运时间相等)搬运,到放学时刚好把初一年级的图书搬运完.下午另一半的学生去初二年级搬运图书,到放学时还剩下一小部分未搬运,最后由三个学生再用一整天的时间刚好搬运完.如果这批学生每人每天搬运的效率是相同的,则这批学生共有人数为______.
    10、(4分)在平面直角坐标系中,函数()与()的图象相交于点M(3,4),N(-4,-3),则不等式的解集为__________.
    11、(4分)若方程有增根,则m的值为___________;
    12、(4分)如图,点E,F分别在x轴,y轴的正半轴上.点在线段EF上,过A作分别交x轴,y轴于点B,C,点P为线段AE上任意一点(P不与A,E重合),连接CP,过E作,交CP的延长线于点G,交CA的延长线于点D.有以下结论①,②,③,④,其中正确的结论是_____.(写出所有正确结论的番号)
    13、(4分)如图,在边长为1的等边△ABC的边AB取一点D,过点D作DE⊥AC于点E,在BC延长线取一点F,使CF=AD,连接DF交AC于点G,则EG的长为________
    三、解答题(本大题共5个小题,共48分)
    14、(12分)(1)如图,已知矩形中,点是边上的一动点(不与点、重合),过点作于点,于点,于点,猜想线段三者之间具有怎样的数量关系,并证明你的猜想;
    (2)如图,若点在矩形的边的延长线上,过点作于点,交的延长线于点,于点,则线段三者之间具有怎样的数量关系,直接写出你的结论;
    (3)如图,是正方形的对角线,在上,且,连接,点是上任一点,与点,于点,猜想线段之间具有怎样的数量关系,直接写出你的猜想.
    15、(8分)已知关于x的方程(m为常数)
    (1)求证:不论m为何值,该方程总有实数根;
    (2)若该方程有一个根是,求m的值。
    16、(8分)如图,点A(1,0),点B在y轴正半轴上,直线AB与直线l:y=相交于点C,直线l与x轴交于点D,AB=.
    (1)求点D坐标;
    (2)求直线AB的函数解析式;
    (3)求△ADC的面积.
    17、(10分)某工厂生产的件新产品,需要精加工后才能投放市场.现把精加工新产品的任务分给甲、乙两人,甲加工新产品的数量要比乙多.
    (1)求甲、乙两人各需加工多少件新产品;
    (2)已知乙比甲平均每天少加工件新产品,用时比甲多用天时间.求甲平均每天加工多少件新产品.
    18、(10分)解方程与不等式组
    (1)解方程:
    (2)解不等式组
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于_____.
    20、(4分)方程的根为________.
    21、(4分)若分式方程无解,则__________.
    22、(4分)如图,梯形中,,点分别是的中点. 已知两底之差是6,两腰之和是12,则的周长是____.
    23、(4分)小明用S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在中,为的中点,,.动点从点出发,沿方向以的速度向点运动;同时动点从点出发,沿方向以的速度向点运动,运动时间是秒.
    (1)用含的代数式表示的长度.
    (2)在运动过程中,是否存在某一时刻,使点位于线段的垂直平分线上?若存在,求出的值;若不存在,请说明理由.
    (3)是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.
    (4)是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.
    25、(10分)如图,在中,过点作,交于点,交于点,过点作,交于点,交于点.
    (1)求证:四边形是平行四边形;
    (2)已知,求的长.
    26、(12分)为了解某校八年级150名女生的身高情况,从中随机抽取10名女生,测得身高并绘制如下条形统计图.
    (1)求出这10名女生的身高的中位数和众数;
    (2)依据样本估计该校八年级全体女生的平均身高;
    (3)请你根据这个样本,在该校八年级中,设计一个挑选50名女生组成方队的方案(要求选中女生的身高尽可能接近).
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    判定直角三角形的方法有两个:一是有一个角是的三角形是直角三角形;二是根据勾股逆定理判断,即三角形的三边满足,其中边c为斜边.
    【详解】
    解:由三角形内角和定理可知,
    ①中,,

    ,能判断是直角三角形,①正确,
    ③中, ,,不是直角三角形,③错误;
    ②中化简得 即 ,边b是斜边,由勾股逆定理是直角三角形,②正确;
    ④中经计算满足,其中边c为斜边,由勾股逆定理是直角三角形,④正确,所以能判断是直角三角形的个数有3个.
    故答案为:C
    本题考查了直角三角形的判定,主要从边和角两方面去考虑,即有一个角是直角或三边满足,灵活运用直角三角形边角的特殊性质取判定直角三角形是解题的关键.
    2、C
    【解析】
    试题分析:一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量:八、九月份的产量分别为50(1+x)、50(1+x)2,从而根据题意得出方程:
    50+50(1+x)+50(1+x)2=1.
    故选C.
    3、D
    【解析】
    先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段A′B与线段AC的关系.
    【详解】
    解:如图,将点A先向下平移3格,再向左平移1格到达A′点,连接A′B,与线段AC交于点O.
    ∵A′O=OB=,AO=OC=2,
    ∴线段A′B与线段AC互相平分,
    又∵∠AOA′=45°+45°=90°,
    ∴A′B⊥AC,
    ∴线段A′B与线段AC互相垂直平分.
    故选D.
    本题考查了平移的性质,勾股定理,正确利用网格求边长长度及角度是解题的关键.
    4、B
    【解析】
    分析:
    根据函数图象中所提供的信息进行分析判断即可.
    详解:
    (1)由图中信息可知,乙是在甲出发3小时后出发的,所以结论①正确;
    (2)由图中信息可知,甲是在乙到达终点3小时后到达的,所以结论②正确;
    (3)由题中信息可得:V甲=80÷8=10(km/小时)V乙=80÷2=40(km/小时),由此可得:V甲:V乙=1:4,所以结论③错误;
    (4)由图中信息和(3)中所求甲和乙的速度易得,乙出发后1小时追上甲,所以结论④不成立.
    综上所述,4个结论中正确的有2个.
    故选B.
    点睛:读懂题意,能够从函数图象中获取相关数据信息是解答本题的关键.
    5、C
    【解析】
    根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.
    【详解】
    解:设原计划每天生产x台机器,则现在可生产(x+50)台.
    依题意得:=.
    故选:C.
    此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.
    6、D
    【解析】
    解:A,B,C都不是同类二次根式,不能合并,故错误;
    D.3﹣=(3﹣=,正确.
    故选D.
    7、B
    【解析】
    先把(x+m)1=n展开,化为一元二次方程的一般形式,再分别使其与方程x1-4x-3=0的一次项系数、二次项系数及常数项分别相等即可.
    【详解】
    解:∵(x+m)1=n可化为:x1+1mx+m1-n=0,
    ∴,解得:
    故选:B.
    此题比较简单,解答此题的关键是将一元二次方程化为一般形式,再根据题意列出方程组即可.
    8、B
    【解析】
    解: ∵,∴,
    ∴方程的解:,.
    故选B.
    考点:1.解一元二次方程-因式分解法;2.因式分解.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、8
    【解析】
    设二年级需要搬运的图书为a本,则一年级搬运的图书为2a本,这批学生有x人,每人每天的搬运效率为m,根据题意的等量关系建立方程组求出其解即可.
    【详解】
    解:设二年级需要搬运的图书为a本,则一年级搬运的图书为2a本,这批学生有x人,每人每天的搬运效率为m,由题意得:
    解得:x=8,即这批学生有8人
    本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,设参数法列方程解实际问题的运用,解答时根据工作量为2a和a建立方程是关键,运用整体思想是难点.
    10、-4<x<0或x>1.
    【解析】
    先根据已知条件画出在同一平面直角坐标系中,函数y=kx+b(k≠0)与(m≠0)的图象,再利用图象求解即可.
    【详解】
    解:如图.
    ∵函数y=kx+b(k≠0)与(m≠0)的图象相交于点M(1,4),N(-4,-1),
    ∴不等式kx+b>的解集为:-4<x<0或x>1.
    故答案为-4<x<0或x>1.
    本题考查了反比例函数与一次函数的交点问题,画出图象利用数形结合是解题的关键.
    11、-4或6
    【解析】
    方程两边同乘最简公分母(x-2)(x+2),化为整式方程,然后根据方程有增根,求得x的值,代入整式方程即可求得答案.
    【详解】
    方程两边同乘(x-2)(x+2),
    得2(x+2)+mx=3(x-2)
    ∵原方程有增根,
    ∴最简公分母(x+2)(x-2)=0,
    解得x=-2或2,
    当x=-2时,m=6,
    当x=2时,m=-4,
    故答案为:-4或6.
    本题考查了分式方程增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
    12、①③④.
    【解析】
    如图,作AM⊥y轴于M,AN⊥OE于N.首先证明四边形AMON是正方形,再证明△AMF≌△ANB(ASA),△AMC≌△ANE(ASA),△AFC≌△ABE(SSS)即可解决问题.
    【详解】
    解:如图,作AM⊥y轴于M,AN⊥OE于N.
    ∵A(4,4),
    ∴AM=AN=4,
    ∵∠AMO=∠ONA=90°,
    ∴四边形ANON是矩形,
    ∵AM=AN,
    ∴四边形AMON是正方形,
    ∴OM=ON=4,
    ∴∠MAN=90°,
    ∵CD⊥EF,
    ∴∠FAC=∠MAN=90°,
    ∴△AMF≌△ANB(ASA),∴FM=BN,
    ∴OF+OB=OM+FM+ON-BN=2OM=8,故③正确,
    同法可证△AMC≌△ANE(ASA),
    ∴CM=NE,AC=AE,故①正确;
    ∵FM=BN,
    ∴CF=BE,
    ∵AC=AE,AF=AB,
    ∴△AFC≌△ABE(SSS),
    ∴S△ABE-S△BOC=S△AFC-S△BOC=S四边形ABOF=S正方形AMON=16,故④正确,
    当BE为定值时,点P是动点,故PC≠BE,故②错误,
    故答案为①③④.
    本题考查三角形的面积、坐标与图形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
    13、
    【解析】
    过D作BC的平行线交AC于H,通过求证△DHG和△FCG全等,推出HG=CG,再通过证明△ADH是等边三角形和DE⊥AC,推出AE=EH,即可推出AE+GC=EH+HG,可得EG=AC,即可推出EG的长度.
    【详解】
    解:如图,过D作DH∥BC,交AC于点H.
    ∴∠F=∠GDH,
    ∵△ABC是等边三角形,
    ∴∠ADH=∠B=60°,∠AHD=∠ACB=60°,
    ∴△ADH是等边三角形,
    ∴AD=DH,
    ∵AD=CF,
    ∴DH=CF,
    ∵∠DGH=∠FGC,
    ∴△DGH≌△FGC(AAS),
    ∴HG=CG.
    ∵DE⊥AC,△ADH是等边三角形,
    ∴AE=EH,
    ∴AE+CG=EH+HG,
    ∴EG=AC=;
    故答案为:.
    本题主要考查等边三角形的判定与性质、平行线的性质、全等三角形的判定与性质,关键在于正确地作出辅助线,熟练运用相关的性质、定理,认真地进行计算.
    三、解答题(本大题共5个小题,共48分)
    14、(1),见解析;(2)或者,见解析;(3).
    【解析】
    (1)过点作于,先得出四边形是矩形,再证明四边形是矩形,证明,求出即可;
    (2)过C点作CO垂直EF,可得矩形HCOF,因为HC=FO,只要证明EO=EG,最后根据AAS证明.
    (3)连接AC交BD于O,过点E作EH⊥AC,证明矩形FOHE,证明EG=CH,根据AAS证明.
    【详解】
    (1)答:
    证明:如图1,过点作于.

    四边形是矩形.


    四边形是矩形,
    ,且互相平分
    ∴∠DBC=∠ACB



    又,

    ∴EG=CN

    即;
    (2)或者;
    过C点作CO垂直EF,
    ∵,CO⊥EF,
    ∴矩形COHF
    ∴CE∥BD,CH=DO
    ∴∠DBC=∠OCE
    ∵矩形ABCD
    ∴∠DBC=∠ACB
    ∵∠ECG=∠ACB
    ∴∠ECG=∠OCE
    ∵CO⊥EF,
    ∴∠G=∠COE
    ∵CE=CE

    ∴EO=EG
    ∴或者;
    (3).
    连接AC交BD于O,过点E作EH⊥AC,
    ∵正方形ABCD
    ∴FO⊥AC,
    ∵EH⊥AC
    ∴矩形FEOH,∠EHC=90°
    ∵EG⊥BC,EF=OH
    ∴∠EGC=90°=∠EHC
    ∴EH∥BD
    ∴∠HEC=∠FLE
    ∵BL=BC
    ∴∠GCE=∠FLE
    ∴∠GCE=∠HEC
    ∵EC=EC

    ∴HC=GE

    本题考查的是矩形的综合运用,熟练掌握全等三角形是解题的关键.
    15、(1)见解析;(2)
    【解析】
    (1)分类讨论:当m=0时,方程为一元一次方程,有一个实数解;当m≠0时,计算判别式得到△=(m-1)2≥0,则方程有两个实数解,于是可判断不论m为何值,方程总有实数根;
    (2)将代入原方程,即可求出m的值.
    【详解】
    (1)解:当时,原方程化为,解得,此时该方程有实数根;
    当时,此时该方程有实数根;
    综上所述,不论m为何值,该方程总有实数根.
    (2)解法1:把代入原方程,得,
    解得,
    经检验是方程的解,
    的值为.
    解法2:,该方程是一元二次方程.
    设该方程的另一个根为.
    ,解得.
    把代入原方程,得,解得.
    本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:
    ①当△>0时,方程有两个不相等的实数根;
    ②当△=0时,方程有两个相等的实数根;
    ③当△<0时,方程无实数根.
    也考查了方程的解的定义.
    16、(1)点D坐标为(4,0);(2)s=﹣1x+1;(1)
    【解析】
    【分析】(1)设y=0,可求D的坐标;(2)由勾股定理求出OB,再用待定系数法求函数解析式;(1)根据三角形面积公式:S△ABC =,可得.
    【详解】解; (1)当y=0时,,得x=4,
    ∴ 点D坐标为(4,0).
    (2)在△AOB中,∠AOB=90°
    ∴ OB=,
    ∴ B坐标为(0,1),
    ∴ 直线AB经过(1,0),(0,1),
    设直线AB解析式s=kt+b,
    ∴ 解得 ,
    ∴ 直线AB 解析式为s=﹣1x+1.
    (1)如图,
    由 得
    ∴ 点C坐标为(2,-1)
    作CM⊥x轴,垂足为M,则点M坐标为(2,0)
    ∴ CM=0 -(-1)=1
    AD=4-1=1.
    ∴ S△ABC =.
    【点睛】本题考核知识点:一次函数.解题关键点:熟记一次函数的性质.
    17、(1)甲、乙两人分别需加工件、件产品;(2)甲平均每天加工件产品
    【解析】
    (1)方法一:先求得乙的加工的产品件数,即可求得甲需加工的产品件数;方法二:设乙需加工件产品,结合题意列出甲、乙需加工的产品件数即可.
    (2)设甲平均每天加工件产品,则乙平均每天加工件产品,结合题意列出方程求解即可.
    【详解】
    解:(1)方法一:乙的加工的产品件数为:
    则甲需加工的产品件数为:
    方法二:设乙需加工件产品,则甲需加工件零件,
    根据题意,得.
    解得
    所以,
    甲、乙两人分别需加工件、件产品.
    (2)设甲平均每天加工件产品,则乙平均每天加工件产品,
    由题意可得
    解得
    经检验它们都是原方程的根,但不符合题意.
    答:甲平均每天加工件产品
    此题考查一元一次方程,解题关键在于结合题意列出方程.
    18、(1);(2)
    【解析】
    (1)先把分母化为相同的式子,再进行去分母求解;
    (2)依次解出各不等式的解集,再求出其公共解集.
    【详解】
    解:(1)原分式方程可化为,
    方程两边同乘以得:
    解这个整式方程得:
    检验:当,
    所以,是原方程的根
    (2)解不等式①得:
    解不等式②得:
    不等式①、②的解集表示在同一数轴上:
    所以原不等式组的解集为:
    此题主要考查分式方程、不等式组的求解,解题的关键是熟知分式方程的解法及不等式的性质.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a,10)代入解析式即可.
    【详解】
    设经过(1,4),(2,7)两点的直线解析式为y=kx+b,
    ∴,
    解得,
    ∴y=1x+1,
    将点(a,10)代入解析式,则a=1;
    故答案为:1.
    此题考查待定系数法求一次函数的解析式,正确理解题意,利用一次函数解析式确定点的横坐标a的值.
    20、
    【解析】
    运用因式分解法可解得.
    【详解】
    由得
    故答案为:
    考核知识点:因式分解法解一元二次方程.
    21、1
    【解析】
    先把m看作已知,解分式方程得出x与m的关系,再根据分式方程无解可确定方程的增根,进一步即可求出m的值.
    【详解】
    解:在方程的两边同时乘以x-1,得 ,
    解得.
    因为原方程无解,所以原分式方程有增根x=1,即,解得m=1.
    故答案为1.
    本题考查了分式方程的解法和分式方程的增根,正确理解分式方程无解与其增根的关系是解题的关键.
    22、1.
    【解析】
    延长EF交BC于点H,可知EF,FH,FG、EG分别为△BDC、△ABC、△BDC和△ACD的中位线,由三角形中位线定理结合条件可求得EF+FG+EG,可求得答案.
    【详解】
    连接AE,并延长交CD于K,
    ∵AB∥CD,
    ∴∠BAE=∠DKE,∠ABD=∠EDK,
    ∵点E、F、G分别是BD、AC、DC的中点.
    ∴BE=DE,
    在△AEB和△KED中,

    ∴△AEB≌△KED(AAS),
    ∴DK=AB,AE=EK,EF为△ACK的中位线,
    ∴EF=CK=(DC-DK)=(DC-AB),
    ∵EG为△BCD的中位线,∴EG=BC,
    又FG为△ACD的中位线,∴FG=AD,
    ∴EG+GF=(AD+BC),
    ∵两腰和是12,即AD+BC=12,两底差是6,即DC-AB=6,
    ∴EG+GF=6,FE=3,
    ∴△EFG的周长是6+3=1.
    故答案为:1.
    此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.
    23、30
    【解析】
    根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.
    【详解】
    解:∵S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2],
    ∴平均数为3,共10个数据,
    ∴x1+x2+x3+…+x10=10×3=30.
    故答案为30.
    本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)CP=8-3t;(2)见解析;(3)见解析;(4)见解析.
    【解析】
    (1)直接利用即可求解;
    (2)根据线段垂直平分线的性质可得,列方程求解即可;
    (3)根据全等三角形的性质可得若,因为,,所以只需,列方程求出的值即可;
    (4)若,因为,所以需满足且,即且,没有符合条件的t的值,故不存在.
    【详解】
    解:(1);
    (2)若点位于线段的垂直平分线上,
    则,
    即,
    解得.
    所以存在,秒时点位于线段的垂直平分线上.
    (3)若,
    因为,,
    所以只需,
    即,解得,
    所以存在.
    (4)若,
    因为,
    所以需满足且,
    即且,
    所以不存在.
    本题考查全等三角形的判定和性质及动点运动问题,对于运动型的问题,关键是用时间t表示出相应的线段的长度,能根据题意列方程求解.
    25、(1)见解析;(2)13
    【解析】
    (1)只要证明DN∥BM,DM∥BN即可;
    (2)只要证明△CEM≌△AFN,可得FN=EM=5,在Rt△AFN中,根据勾股定理即可解决问题.
    【详解】
    (1)∵四边形是平行四边形,
    ∴.
    ∵,
    ∴,
    ∴四边形是平行四边形.
    (2)∵四边形,都是平行四边形,
    ∴,
    ∴.
    又∵,
    ∴,
    ∴.
    在中,.
    本题考查平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    26、 (1)众数162,中位数161.5;(2)161cm;(3).
    【解析】
    (1)根据统计图中的数据可以求得这组数据的中位数和众数;
    (2)根据加权平均数的求法可以解答本题;
    (3)根据题意可以设计出合理的方案,注意本题答案不唯一.
    【详解】
    解:(1)这10名女生的身高为:154、158、158、161、161、162、162、162、165、167,
    ∴这10名女生的身高的中位数是:cm,众数是162cm,
    即这10名女生的身高的中位数和众数分别是161.5cm、162cm;
    (2)平均身高.
    (3)可以先将八年级身高是162cm的所有女生挑选出来,若不够,再挑选身高与162cm最接近的,直到挑选到50人为止.
    本题考查条形统计图、用样本估计总体、加权平均数、中位数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    题号





    总分
    得分
    相关试卷

    2024年山东省济宁市济宁院附属中学数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024年山东省济宁市济宁院附属中学数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省无锡市阳山中学数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024年江苏省无锡市阳山中学数学九上开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省襄阳市枣阳市徐寨中学数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024年湖北省襄阳市枣阳市徐寨中学数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map