2024年四川省成都市青白江区数学九年级第一学期开学质量跟踪监视试题【含答案】
展开
这是一份2024年四川省成都市青白江区数学九年级第一学期开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,直线y=kx+b过A(-1,2),B(-2,0)两点,则0≤kx+b≤-2x的解集为( )
A.x≤-2或x≥-1B.0≤y≤2C.-2≤x≤0D.-2≤x≤-1
2、(4分)菱形不具备的性质是( )
A.四条边都相等 B.对角线一定相等 C.是轴对称图形 D.是中心对称图形
3、(4分)已知直线y=kx-4(k<0)与两坐标轴所围成的三角形面积等于4,则该直线的表达式为( )
A.y= -x-4B.y= -2x-4C.y= -3x+4D.y= -3x-4
4、(4分)直角三角形纸片的两直角边长分别为6,8,现将△ABC如图折叠,使点A与点B重合,则折痕DE的长是( )
A.B.C.D.
5、(4分)在中,若,则( )
A.B.C.D.
6、(4分)在数学活动课上,老师要求同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的四位同学拟定的方案,其中正确的是( )
A.测量对角线是否相互平分B.测量两组对边是否分别相等
C.测量一组对角是否都为直角D.测量四边形其中的三个角是否都为直角
7、(4分)下列各式中,能与合并的二次根式是 ( )
A.B.C.D.
8、(4分)解分式方程时,去分母变形正确的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若将直线y=﹣2x向上平移3个单位后得到直线AB,那么直线AB的解析式是_____.
10、(4分)化简:= .
11、(4分)计算:(-0.75)2015 × = _____________.
12、(4分)一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最少打___折.
13、(4分)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在Rt△ABC中,∠BCA=90°,CD是AB边上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.
求证:四边形ADCE是菱形.
15、(8分)已知:如图Rt△ABC中,∠ACB=90°,CD为∠ACB的平分线,DE⊥BC于点E,DF⊥AC于点F.
求证:四边形CEDF是正方形.
16、(8分)射阳县实验初中为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:
参加社区活动次数的频数、频率分布表
根据以上图表信息,解答下列问题:
(1)表中a= ,b= ;
(2)请把频数分布直方图补充完整(画图后请标注相应的数据);
(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?
17、(10分)如图,已知直线y=+1与x轴、y轴分别交于点A、B,以线AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90、点P(x、y)为线段BC上一个动点(点P不与B、C重合),设△OPA的面积为S。
(1)求点C的坐标;
(2)求S关于x的函数解析式,并写出x的的取值范围;
(3)△OPA的面积能于吗,如果能,求出此时点P坐标,如果不能,说明理由.
18、(10分)如图,在▱ABCD中,,P,O分别为AD,BD的中点,延长PO交BC于点Q,连结BP,DQ,求证:四边形PBQD是菱形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)下表是某校女子羽毛球队队员的年龄分布:
则该校女子排球队队员年龄的中位数为__________岁.
20、(4分)矩形中,对角线交于点,,则的长是__________.
21、(4分)一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为_____.
22、(4分)如图,中,,,,点D是AC上的任意一点,过点D作于点E,于点F,连接EF,则EF的最小值是_________.
23、(4分)如图,为直角三角形,其中,则的长为__________________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:
(1);
(2).
25、(10分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.
(1)如图1,若点O在边BC上,OE⊥AB,OF⊥AC,垂足分别为E,F.求证:AB=AC;
(2)如图,若点O在△ABC的内部,求证:AB=AC;
(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.
26、(12分)已知一次函数y=kx+b的图象与y=3x的图象平行,且经过点(﹣1,1),求这个一次函数的关系式,并求当x=5时,对应函数y的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
先确定直线OA的解析式为y=-2x,然后观察函数图象得到当-2≤x≤-1时,y=kx+b的图象在x轴上方且在直线y=-2x的下方.
【详解】
解:直线OA的解析式为y=-2x,
当-2≤x≤-1时,0≤kx+b≤-2x.
故选:D.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
2、B
【解析】
【分析】根据菱形的性质逐项进行判断即可得答案.
【详解】菱形的四条边相等,
菱形是轴对称图形,也是中心对称图形,
菱形对角线垂直但不一定相等,
故选B.
【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.
3、B
【解析】
先求出直线y=kx-1(k<0)与两坐标轴的交点坐标,然后根据三角形面积等于1,得到一个关于k的方程,求出此方程的解,即可得到直线的解析式.
【详解】
解:直线y=kx-1(k<0)与两坐标轴的交点坐标为(0,-1)(,0),
∵直线y=kx-1(k<0)与两坐标轴所围成的三角形面积等于1,
∴×(-)×1=1,解得k=-2,
则直线的解析式为y=-2x-1.
故选:B.
本题考查用待定系数法求一次函数的解析式.根据三角形面积公式及已知条件,列出方程,求出k的值,即得一次函数的解析式.
4、D
【解析】
先通过勾股数得到,再根据折叠的性质得到,,,设,则,,在中利用勾股定理可计算出x,然后在中利用勾股定理即可计算得到DE的长.
【详解】
直角三角形纸片的两直角边长分别为6,8,
,
又折叠,
,,,
设,则,,
在中,,即,解得,
在中,
故选D.
本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等也考查了勾股定理.
5、A
【解析】
根据平行四边形的性质可得出,,因此,,即可得出答案.
【详解】
解:根据题意可画出示意图如下:
∵四边形ABCD是平行四边形,
∴,
∴,
∵,
∴,
∴.
故选:A.
本题考查的知识点是平行四边形的性质,属于基础题目,易于理解掌握.
6、D
【解析】
根据矩形的判定定理即可选出答案.
【详解】
解:A.对角线是否相互平分,能判定平行四边形,而不能判定矩形;
B.两组对边是否分别相等,能判定平行四边形,而不能判定矩形;
C.一组对角是否都为直角,不能判定形状;
D.四边形其中的三个角是否都为直角,能判定矩形.
故选D.
本题考查了矩形的判定定理.解题的关键是牢记这些定理.
矩形的判定定理:(1)有一个角是直角的平行四边形是矩形;
(2)有三个角是直角的四边形是矩形;
(3)对角线互相平分且相等的四边形是矩形.
7、B
【解析】
先化成最简二次根式,再判断即可.
【详解】
解:A、不能与合并,故本选项不符合题意;
B、=,能与合并,故本选项符合题意;
C、=,不能与合并,故本选项不符合题意;
D、=4,不能与合并,故本选项不符合题意.
本题考查了同类二次根式和二次根式的性质等知识点,能理解同类二次根式的定义是解此题的关键.
8、D
【解析】
先对分式方程乘以,即可得到答案.
【详解】
去分母得:,故选:D.
本题考查去分母,解题的关键是掌握通分.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=﹣2x+1.
【解析】
利用直线的平移规律:(1)k不变;(2) “上加下减,左加右减”的原则进行解答即可.
【详解】
∵将直线y=﹣2x向上平移1个单位,
∴y=﹣2x+1,
即直线的AB的解析式是y=﹣2x+1.
故答案为:y=﹣2x+1.
本题考查了一次函数图象平移的特点.熟练应用一次函数平移规律是解题的关键.
10、.
【解析】
试题分析:原式=.
考点:二次根式的乘除法.
11、
【解析】
根据积的乘方的逆用进行计算求解.
【详解】
解:(-0.75)2015 ×
=
=
=
=
本题考查积的乘方的逆用使得运算简便,掌握积的乘方公式正确计算是本题的解题关键.
12、九
【解析】
打折销售后要保证获利不低于8%,因而可以得到不等关系为:利润率≥8%,设可以打x折,根据不等关系就可以列出不等式.
【详解】
解:设可以打x折.
那么(600×-500)÷500≥8%
解得x≥1.
故答案为1.
本题考查一元一次不等式的应用,解题关键是读懂题意,找到符合题意的不等关系式.
13、
【解析】
∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,
∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:.
考点:概率公式.
三、解答题(本大题共5个小题,共48分)
14、证明见解析
【解析】
试题分析:欲证明四边形ADCE是菱形,需先证明四边形ADCE为平行四边形,然后再证明其对角线相互垂直即可.
证明:∵DE∥BC,EC∥AB,
∴四边形DBCE是平行四边形.
∴EC∥DB,且EC=DB.
在Rt△ABC中,CD为AB边上的中线,
∴AD=DB=CD.
∴EC=AD.
∴四边形ADCE是平行四边形.
∴ED∥BC.
∴∠AOD=∠ACB.
∵∠ACB=90°,
∴∠AOD=∠ACB=90°.
∴平行四边形ADCE是菱形.
15、证明见解析
【解析】
试题分析:证明有三个角是直角是矩形,再证明一组邻边相等.
试题解析:
∵CD平分∠ACB,DE⊥BC,DF⊥AC,
∴DE=DF,∠DFC=90°,∠DEC=90°
又∵∠ACB=90°,
∴四边形DECF是矩形,
∴矩形DECF是正方形.
点睛:证明正方形
(1)对角线相等的菱形是正方形.
(2)对角线互相垂直的矩形是正方形,正方形是一种特殊的矩形.
(3)四边相等,有三个角是直角的四边形是正方形.
(4)一组邻边相等的矩形是正方形.
(5)一组邻边相等且有一个角是直角的平行四边形是正方形.
(6)四边均相等,对角线互相垂直平分且相等的平行四边形是正方形.
16、(1)12;0.08 (2)12(3)672
【解析】
试题分析:(1)直接利用已知表格中3
相关试卷
这是一份2024年四川省成都市成华区九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年海南省九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年四川省大竹县九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。