2024年四川省泸州市泸县九上数学开学检测试题【含答案】
展开这是一份2024年四川省泸州市泸县九上数学开学检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中平行四边形AEMG的面积与平行四边形HCFM的面积的大小关系是( )
A.B.
C.D.
2、(4分)如图,中,、分别是、的中点,平分,交于点,若,则的长是
A.3B.2C.D.4
3、(4分)在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是( )
A.B.C.D.
4、(4分)下列计算错误的是( )
A.B.C.D.
5、(4分)若关于x的不等式组的解集为x<2,则a的取值范围是( )
A.a≥﹣2B.a>﹣2C.a≤﹣2D.a<﹣2
6、(4分)下列根式中,不能与合并的是( )
A.B.C.D.
7、(4分)在平面直角坐标系中,将抛物线向右平移2个单位,得到的抛物线的解析式是( ).
A.B.C.D.
8、(4分)九(2)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16。这组数据的中位数、众数分别为( )
A.16,16B.10,16C.8,8D.8,16
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为____.
10、(4分)有两名学员小林和小明练习飞镖,第一轮10枚飞镖掷完后两人命中的环数如图所示,已知新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______;这名选手的10次成绩的极差是______.
11、(4分)已知一个函数的图象与反比例函数的图象关于轴对称,则这个函数的表达式是__________.
12、(4分)分解因式:m2 n mn =_____。
13、(4分)已知一次函数y=(-1-a2)x+1的图象过点(x1,2),(x2-1),则x1与x2的大小关系为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,在四边形中,,为对角线的中点,为的中点,为的中点.求证:
15、(8分)如图,正方形ABCD和正方形CEFC中,点D在CG上,BC=1,CE=3,H是AF的中点,EH与CF交于点O.
(1)求证:HC=HF.
(2)求HE的长.
16、(8分)正比例函数和一次函数的图象都经过点,且一次函数的图象交轴于点.
(1)求正比例函数和一次函数的表达式;
(2)在如图所示的平面直角坐标系中分别画出这两个函数的图象;
(3)求出的面积.
17、(10分)如图,AD是△ABC的角平分线,线段AD的垂直平分线分别交AB和AC于点E、F,连接DE、DF.
(1)试判定四边形AEDF的形状,并证明你的结论.
(2)若DE=13,EF=10,求AD的长.
(3)△ABC满足什么条件时,四边形AEDF是正方形?
18、(10分)今年人夏以来,松花江哈尔滨段水位不断下降,达到历史最低水位,一条船在松花江某水段自西向东沿直线航行,在处测得航标在北偏东方向上,前进米到达处,又测得航标在北偏东方向上,如图在以航标为圆心,米长为半径的圆形区域内有浅滩,如果这条船继续前进,是否有被浅滩阻碍的危险? ()
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=8cm,EF=15cm,则边AD的长是______cm.
20、(4分)在市业余歌手大奖赛的决赛中,参加比赛的名选手成绩统计如图所示,则这名选手成绩的中位数是__________.
21、(4分)在△ABC中,AC=BC=,AB=2,则△ABC中的最小角是_____.
22、(4分)已知点(-4,y1),(2,y2)都在直线y=ax+2(a<0)上,则y1, y2的大小关系为_________ .
23、(4分)某商品的标价比成本高,当该商品降价出售时,为了不亏本,降价幅度不得超过,若用表示,则___.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,矩形ABCD中,对角线AC与BD相交于点O.
(1)写出与相反的向量______;
(2)填空:++=______;
(3)求作:+(保留作图痕迹,不要求写作法).
25、(10分)已知:如图,在▱ABCD中,AD=4,AB=8,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于点G.
(1)求证:△ADE≌△CBF;
(2)若四边形BEDF是菱形,求四边形AGBD的面积.
26、(12分)解不等式组,并在数轴上把解集表示出来.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据平行四边形的性质和判定得出平行四边形GBEP、GPFD,证△ABD≌△CDB,得出△ABD和△CDB的面积相等;同理得出△BEM和△MHB的面积相等,△GMD和△FDM的面积相等,相减即可求出答案.
【详解】
∵四边形ABCD是平行四边形,EF∥BC,HG∥AB,
∴AD=BC,AB=CD,AB∥GH∥CD,AD∥EF∥BC,
∴四边形HBEM、GMFD是平行四边形,
在△ABD和△CDB中;
∵ ,
∴△ABD≌△CDB(SSS),
即△ABD和△CDB的面积相等;
同理△BEM和△MHB的面积相等,△GMD和△FDM的面积相等,
故四边形AEMG和四边形HCFM的面积相等,即.
故选:A.
此题考查平行四边形的性质,全等三角形的判定与性质,解题关键在于得出△ABD≌△CDB
2、A
【解析】
利用中位线定理,得到DE∥AB,根据平行线的性质,可得∠EDC=∠ABC,再利用角平分线的性质和三角形内角外角的关系,得到DF=DB,进而求出DF的长.
【详解】
在中,、分别是、的中点,
,
,
平分,
.
.
.
在中,,
,
.
故选.
本题考查了三角形中位线定理和等腰三角形的判定于性质.三角形的中位线平行于第三边,当出现角平分线,平行线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
3、C
【解析】
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.
【详解】
解:观察四个选项中的图形,只有C符合中心对称的定义.
本题考察了中心对称的含义.
4、D
【解析】
根据二次根式的运算法则分别计算,再作判断.
【详解】
A、,选项正确;
B、,选项正确;
C、,选项正确;
D、,选项错误.
故选:D.
本题主要考查二次根式的运算,解题的关键是熟练地掌握二次根式的运算法则.
5、C
【解析】
分别求出每个不等式的解集,根据不等式组的解集为x<2可得关于a的不等式,解之可得.
【详解】
解不等式,得:x<2,
解不等式<x,得:x<﹣a,
∵不等式组的解集为x<2,
∴﹣a≥2,
解得:a≤﹣2,
故选:C.
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
6、C
【解析】
解:A、,本选项不合题意;
B、,本选项不合题意;
C、,本选项合题意;
D、,本选项不合题意;
故选C.
考点:同类二次根式.
7、B
【解析】
试题解析:将抛物线向右平移2个单位,
得到的抛物线的解析式是
故选B.
点睛:二次函数图像的平移规律:左加右减,上加下减.
8、D
【解析】
根据众数和中位数的定义求解.找出次数最多的数为众数;把5个数按大小排列,位于中间位置的为中位数.
【详解】
解:在这一组数据中16是出现次数最多的,故众数是16;而将这组数据从小到大的顺序排列后,处于中间位置的数是1,那么由中位数的定义可知,这组数据的中位数是1.
故选:D.
本题考查统计知识中的中位数和众数的定义.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.一组数据中出现次数最多的数据叫做众数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据直角三角形的性质(斜边上的中线等于斜边的一半),求出DM=AB=3,即可得到ME=1,根据题意求出DE=DM+ME=4,根据三角形中位线定理可得BC=2DE=1.
【详解】
解:∵AM⊥BM,点D是AB的中点,
∴DM=AB=3,
∵ME=DM,
∴ME=1,
∴DE=DM+ME=4,
∵D是AB的中点,DE∥BC,
∴BC=2DE=1,
故答案为:1.
点睛:本题考查的是三角形的中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
10、小林, 9环
【解析】
根据折线统计图中小明与小林的飞镖命中的环数波动性大小以及极差的定义,即可得到答案.
【详解】
根据折线统计图,可知小林是新手,
小林10次成绩的极差是10-1=9(环)
故答案为:小林,9环.
本题主要考查折线统计图中数据的波动性与极差的定义,掌握极差的定义:一组数据中,最大数与最小数的差,是解题的关键.
11、
【解析】
直接根据平面直角坐标系中,关于y轴对称的特点得出答案.
【详解】
解:∵反比例函数的图象关于y轴对称的函数x互为相反数,y不变,
∴,
故答案为:.
本题考查反比例函数与几何变换,掌握关于y轴对称时,y不变,x互为相反数是解题关键.
12、n(m-)2
【解析】
原式提取n,再利用完全平方公式分解即可.
【详解】
解:原式=n(m2-m+)=n(m-)2,
故答案为:n(m-)2
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
13、x1<x1
【解析】
由k=-1-a1,可得y随着x的增大而减小,由于1>-1, 所以x1<x1.
【详解】
∵y=(-1-a1)x+1,k=-1-a1<0,
∴y随着x的增大而减小,
∵1>-1,
∴x1<x1.
故答案为:x1<x1
本题考查的是一次函数,熟练掌握一次函数的性质是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、见解析.
【解析】
根据中位线定理和已知,易证明△NMP是等腰三角形,根据等腰三角形的性质即可得到结论.
【详解】
解:证明:∵是中点,是中点,
∴是的中位线,
∴,
∵是中点,是中点,
∴是的中位线,
∴,
∵,
∴,
∴是等腰三角形,
∴.
此题主要考查了三角形中位线定理,以及等腰三角形的判定与性质,熟练掌握等腰三角形的性质是解题的关键.
15、(1)见解析;(2)HE=.
【解析】
(1)利用直角三角形斜边上的中线等于斜边的一半求解即可;
(2)分别求得HO和OE的长后即可求得HE的长.
【详解】
(1)证明:∵AC、CF分别是正方形ABCD和正方形CGFE的对角线,
∴∠ACD=∠GCF=45°,
∴∠ACF=90°,
又∵H是AF的中点,
∴CH=HF;
(2)∵CH=HF,EC=EF,
∴点H和点E都在线段CF的中垂线上,
∴HE是CF的中垂线,
∴点H和点O是线段AF和CF的中点,
∴OH=AC,
在Rt△ACD和Rt△CEF中,AD=DC=1,CE=EF=3,
∴AC=,
∴CF=3,
又OE是等腰直角△CEF斜边上的高,
∴OE=,
∴HE=HO+OE=2;
本题考查了正方形的性质,直角三角形斜边上的中线,三角形中位线,垂直平分线,勾股定理,解题的关键是根据题干与图形中角和边的关系,找到解决问题的条件.
16、(1);;(2)图详见解析;(3)3
【解析】
(1)把代入即可求得的值,求得正比例函数的解析式;把,代入,利用待定系数法,即可求得一次函数的解析式;
(2)根据题意描出相应的点,再连线即可;
(3)由A、B、O三点坐标,根据三角形的面积公式即可求解.
【详解】
解:(1)把A(1,2)代入中,得,
∴正比例函数的表达式为;
把A(1,2),B(3,0)代入中,得
,
解得:,
所以一次函数的表达式为;
(2)如图所示.
(3)由题意可得:.
本题考查了待定系数法求函数解析式,以及直线与坐标轴围成的三角形的面积的计算,理解线段的长度可以通过点的坐标表示,培养数形结合思想是关键.
17、(1)四边形AEDF是菱形,证明见解析;(2)24;(3)当△ABC中∠BAC=90°时,四边形AEDF是正方形;
【解析】
(1)由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°证△AEO≌△AFO,推出EO=FO,得出平行四边形AEDF,根据EF⊥AD得出菱形AEDF;(2)由(1)知菱形AEDF对角线互相垂直平分,故AO=AD=4,根据勾股定理得EO=3,从而得到EF=6;(3)根据有一个角是直角的菱形是正方形可得∠BAC=90°时,四边形AEDF是正方形.
【详解】
(1)四边形AEDF是菱形,
∵AD平分∠BAC,
∴∠1=∠2,
又∵EF⊥AD,
∴∠AOE=∠AOF=90°
∵在△AEO和△AFO中
∵,
∴△AEO≌△AFO(ASA),
∴EO=FO,
∵EF垂直平分AD,
∴EF、AD相互平分,
∴四边形AEDF是平行四边形
又EF⊥AD,
∴平行四边形AEDF为菱形;
(2)∵EF垂直平分AD,AD=8,
∴∠AOE=90°,AO=4,
在RT△AOE中,∵AE=5,
∴EO==3,
由(1)知,EF=2EO=6;
(3)当△ABC中∠BAC=90°时,四边形AEDF是正方形;
∵∠BAC=90°,
∴四边形AEDF是正方形(有一个角是直角的菱形是正方形).
本题考查了菱形的判定和正方形的判定,解题的关键是掌握邻边相等的平行四边形是菱形,有一个角是直角的菱形是正方形.
18、没有被浅滩阻碍的危险
【解析】
过点C作CD⊥AB于点D,在直角△ACD和直角△BDC中,AD,BD都可以用CD表示出来,根据AB的长,就得到关于CD的方程,就可以解得CD的长,与120米进行比较即可.
【详解】
过点作,设垂足为,
在中,
在中,
米
米.
米>米,故没有危险.
答:若船继续前进没有被浅滩阻碍的危险.
本题考查了解直角三角形的知识,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
通过设各线段参数,利用勾股定理和射影定理建立各参数的关系方程,即可解决.
【详解】
解:设AH=e,AE=BE=f,BF=HD=m
在Rt△AHE中,e2+f2=82
在Rt△EFH中,f2=em
在Rt△EFB中,f2+m2=152
(e+m)2=e2+m2+2em=189
AD=e+m=3
故答案为3
本题考查了翻折的性质,利用直角三角形建立方程关系求解.
20、8.5
【解析】
根据中位数的定义找出最中间的两个数,再求出它们的平均数即可.
【详解】
根据图形,这个学生的分数为:,,,,,,,,,,则中位数为.
本题考查求中位数,解题的关键是掌握求中位数的方法.
21、45°.
【解析】
根据勾股定理得到逆定理得到△ABC是等腰直角三角形,根据等腰直角三角形的性质即可的结论.
【详解】
解:∵AC=BC=,AB=2,
∴AC2+BC2=2+2=4=22=AB2,
∴△ABC是等腰直角三角形,
∴△ABC中的最小角是45°;
故答案为:45°.
本题考查了等腰直角三角形,勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.
22、y1>y2
【解析】
∵k=a<0,
∴y随x的增大而减小.
∵−4<2,∴y1>y2.
故答案为y1>y2.
23、
【解析】
本题主要考查列代数式. 此题中最大的降价率即是保证售价和成本价相等,可以把成本价看作单位1,根据题意即可列式.
解:设成本价是1,则
(1+p%)(1-d%)=1.
1-d%=,
二、解答题(本大题共3个小题,共30分)
24、 (1) ,;(2);(3)见解析.
【解析】
(1)观察图形直接得到结果;
(2)由+=,+=即可得到答案;
(3)根据平行四边形法则即可求解.
【详解】
解:(1)与相反的向量有,.
(2)∵+=,+=,
∴++=.
(3)如图,作平行四边形OBEC,连接AE,即为所求.
故答案为(1) ,;(2);(3)见解析.
本题考查了平面向量,平面向量知识在初中数学教材中只有沪教版等极少数版本中出现.
25、(1)详见解析;(2)16
【解析】
(1)根据SAS证明△ADE≌△CBF即可.
(2)证明四边形ADBG是矩形,利用勾股定理求出BD即可解决问题.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴DA=BC,∠DAE=∠C,CD=AB,
∵E、F分别为边AB、CD的中点,
∴AE=AB,CF=CD,
∴AE=CF,
∴△ADE≌△CBF(SAS).
(2)解:∵四边形ABCD是平行四边形,
∴AD∥BG,
∵BD∥AG,
∴四边形ADBG是平行四边形,
∵四边形BEDF是菱形,
∴DE=BE,
∴AE=EB,
∴DE=AE=EB,
∴∠ADE=∠EAD,∠EDB=∠EBD,
∵∠EAD+∠EDA+∠EDB+∠EBD=180°,
∴∠EDA+∠EDB=90°,
∴∠ADB=90°,
∴四边形ADBG是矩形,
∵BD=,
∴S矩形ADBG=AD•DB=16.
本题考查平行四边形的性质,菱形的性质,矩形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识型.
26、x>1
【解析】
分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
【详解】
解:
解不等式①,得x>1,
解不等式②,得x≥-4,
把不等式①和②的解集在数轴上表示出来为:
∴原不等式组的解集为x>1,
本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024年四川省泸州市泸县中考二模数学试题,共4页。
这是一份四川省泸州泸县联考2023-2024学年九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知,若,则的值为,如图,点A,B的坐标分别为,计算的结果是,求出函数解析式.等内容,欢迎下载使用。
这是一份四川省泸州泸县2023-2024学年九上数学期末复习检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列事件中是必然事件的是等内容,欢迎下载使用。