2024年天津市河北区红光中学九年级数学第一学期开学综合测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次、甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选( ).
A.甲B.乙C.丙D.丁
2、(4分)不等式5x﹣2>3(x+1)的最小整数解为( )
A.3B.2C.1D.﹣2
3、(4分)已知y与x成正比例,并且时,,那么y与x之间的函数关系式为( )
A.B.C.D.
4、(4分)要使分式有意义,则x应满足的条件是( )
A.x≠1B.x≠1或x≠0C.x≠0D.x>1
5、(4分)若式子有意义,则一次函数的图象可能是( )
A.B.C.D.
6、(4分)若分式有意义,则的取值范围是( )
A. B.C.D.
7、(4分)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是( )
A.B.
C.D.
8、(4分)如图1是由个全等的边长为的正方形拼成的图形,现有两种不同的方式将它沿着虚线剪开,甲将它分成三块,乙将它分成四块,各自要拼一个面积是的大正方形,则( )
A.甲、乙都可以B.甲可以,乙不可以
C.甲不可以,乙可以D.甲、乙都不可以
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,直线与轴、轴分别交于,两点,是的中点,是上一点,四边形是菱形,则的面积为______.
10、(4分)若不等式的正整数解是,则的取值范围是____.
11、(4分)若x1,x2是一元二次方程x2+x﹣2=0的两个实数根,则x1+x2+x1x2=_____.
12、(4分)《算法统宗》记载古人丈量田地的诗:“昨日丈量地回,记得长步整三十.广斜相并五十步,不知几亩及分厘.”其大意是:昨天丈量了田地回到家,记得长方形田的长为30步,宽和对角线之和为50步.不知该田有几亩?请我帮他算一算,该田有___亩(1亩=240平方步).
13、(4分)在湖的两侧有A,B两个观湖亭,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为50米,则A,B之间的距离应为______米.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.
(1)求证:点D是线段BC的中点;
(2)如图2,若AB=AC=13, AF=BD=5,求四边形AFBD的面积.
15、(8分)计算:
(1).
(2).
(3).
(4)解方程:.
16、(8分)计算或解不等式组:
(1)计算.
(2)解不等式组
17、(10分)如图,正方形中,经顺时针旋转后与重合.
(1)旋转中心是点 ,旋转了 度;
(2)如果,,求的长.
18、(10分)如图(1),一架云梯AB斜靠在一竖直的墙上,云梯的顶端A距地面15米,梯子的长度比梯子底端B离墙的距离大5米.
(1)这个云梯的底端B离墙多远?
(2)如图(2),如果梯子的顶端下滑了8m(AC的长),那么梯子的底部在水平方向右滑动了多少米?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)关于x的分式方程有增根,则a=_____.
20、(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOD=120°, AB=2,则BC的长为___________.
21、(4分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是________ .
22、(4分)一次函数y=kx+b与y=2x+1平行,且经过点(﹣3,4),则表达式为:_____.
23、(4分)当时,__.
二、解答题(本大题共3个小题,共30分)
24、(8分)为改善生态环境,防止水土流失,某村计划在江汉堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:
设购买白杨树苗x棵,到两家林场购买所需费用分别为y甲(元)、y乙(元).
(1)该村需要购买1500棵白杨树苗,若都在甲林场购买所需费用为 元,若都在乙林场购买所需费用为 元;
(2)分别求出y甲、y乙与x之间的函数关系式;
(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?
25、(10分)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示:
若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?
26、(12分)已知关于 x 的一元二次方程 x2﹣2(k﹣1)x+k(k+2)=0 有两个不相等的实数根.
(1)求 k 的取值范围;
(2)写出一个满足条件的 k 的值,并求此时方程的根.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题分析:丙的平均数==9,丙的方差= [1+1+1=1]=0.4,
乙的平均数==8.2,
由题意可知,丙的成绩最好,
故选C.
考点:1、方差;2、折线统计图;3、加权平均数
2、A
【解析】
先求出不等式的解集,在取值范围内可以找到最小整数解.
【详解】
5x﹣2>3(x+1),
去括号得:5x﹣2>3x+3,
移项、合并同类项得:2x>5
系数化为1得:x>,
∴不等式5x﹣2>3(x+1)的最小整数解是3;
故选:A.
本题考查了一元一次不等式的整数解.解答此题要先求出不等式的解集,再确定最小整数解.解不等式要用到不等式的性质.
3、A
【解析】
根据y与x成正比例,可设,用待定系数法求出k值.
【详解】
解:设,将,,代入得:
解得:k=8,所以y与x之间的函数关系式为.
故答案为:A
本题考查了正比例函数的解析式,根据正比例函数的定义设出其表达式是解题的关键.
4、A
【解析】
根据分式有意义的条件:分母≠0,即可得出结论.
【详解】
解:由分式有意义,得
x-1≠0,
解得x≠1.
故选:A.
此题考查的是分式有意义的条件,掌握分式有意义的条件:分母≠0是解决此题的关键.
5、A
【解析】
试题分析:当时,式子有意义,所以k>1,所以1-k<0,所以一次函数的图象过第一三四象限,故选A.
考点:1.代数式有意义的条件;2.一次函数图像的性质.
6、B
【解析】
分式有意义时,分母x-1≠0,由此求得x的取值范围.
【详解】
依题意得:x-1≠0,
解得x≠1.
故选B.
本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.
7、B
【解析】
根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;
【详解】
A、不是轴对称图形,是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项正确;
C、不是轴对称图形,是中心对称图形,故本选项错误;
D、是轴对称图形,也是中心对称图形,故本选项错误.
故选B.
8、A
【解析】
直接利用图形的剪拼方法结合正方形的性质分别分析得出答案.
【详解】
解:如图所示:
可得甲、乙都可以拼一个面积是5的大正方形.
故选:.
此题主要考查了图形的剪拼以及正方形的性质,正确应用正方形的性质是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、8.
【解析】
已知直线y=x+8与x轴、y轴分别交于A,B两点, 可求得点A、B的坐标分别为:(8 ,0)、(0,8);又因 C是OB的中点, 可得点C(0,4),所以菱形的边长为4,根据菱形的性质可得DE=4=DC,设点D(m,m+8),则点E(m,m+4),由两点间的距离公式可得CD2=m2+(m+8﹣4)2=16, 解方程求得m=2, 即可得点E(2,2), 再根据S△OAE= ×OA×yE即可求得的面积.
【详解】
∵直线y=x+8与x轴、y轴分别交于A,B两点,
∴当x=0时,y=8;当y=0时,x=8,
∴点A、B的坐标分别为:(8 ,0)、(0,8),
∵C是OB的中点,
∴点C(0,4),
∴菱形的边长为4,则DE=4=DC,
设点D(m,m+8),则点E(m,m+4),
则CD2=m2+(m+8﹣4)2=16,
解得:m=2,
故点E(2,2),
S△OAE= ×OA×yE=×8×2=8 ,
故答案为8.
本题是一次函数与几何图形的综合题,正确求得点E的坐标是解决问题的关键.
10、9≤a<1
【解析】
解不等式3x−a≤0得x≤,其中,最大的正整数为3,故3≤<4,从而求解.
【详解】
解:解不等式3x−a≤0,得x≤,
∵不等式的正整数解是1,2,3,
∴3≤<4,
解得9≤a<1.
故答案为:9≤a<1.
本题考查了一元一次不等式的解法.先解含字母系数的不等式,再根据正整数解的情况确定字母的取值范围.
11、-3
【解析】
根据一元二次方程根与系数的关系即可解答.
【详解】
由根与系数的关系可知:x1+x2=﹣1,x1x2=﹣2
∴x1+x2+x1x2=﹣3
故答案为﹣3
本题考查了一元二次方程根与系数的关系,解题的关键是熟练运用根与系数的关系.
12、1.
【解析】
根据矩形的性质、勾股定理求得长方形的宽,然后由矩形的面积公式解答.
【详解】
设该矩形的宽为x步,则对角线为(50﹣x)步,
由勾股定理,得301+x1=(50﹣x)1,
解得x=16
故该矩形的面积=30×16=480(平方步),
480平方步=1亩.
故答案是:1.
考查了勾股定理的应用,此题利用方程思想求得矩形的宽.
13、1
【解析】
根据三角形中位线的性质定理,解答即可.
【详解】
∵点D、E分别为AC、BC的中点,
∴AB=2DE=1(米),
故答案为:1.
本题主要考查三角形中位线的性质定理,掌握三角形的中位线平行于第三边,且等于第三边长的一半,是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析(2)1
【解析】
分析:(1)利用“AAS”可证明△EAF≌△EDC,则AF=DC,从而得到BD=DC;(2)先证明四边形AFBD是平行四边形,再利用等腰三角形的性质证明AD⊥BC,则四边形AFBD为矩形,然后计算出AD后再计算四边形AFBD的面积.
详解:(1)证明:如图1,∵点E是AD的中点,
∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.
在△EAF和△EDC
,∴△EAF≌△EDC,∴AF=DC,∵AF=BD,
∴BD=DC,即D是BC的中点;
(2)解:如图2,∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,
∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC,
在Rt△ABD中,AD==12,∴矩形AFBD的面积=BD•AD=1.
点睛:本题考查了全等三角形的判定与性质:在判定三角形全都时,关键是选择恰当的判定条件,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当的辅助线构造三角形.
15、 (1)-1;(2)+1;(3);(4)x=-15
【解析】
(1)根据二次根式的运算法则合并计算即可;(2)根据二次根式的运算法则合并计算即可;(3)先把分母因式分解,再通分,按照同分母分式的加减法法则计算即可;(4)分式两边同时乘以(x+3)(x-3),再去括号、移项、整理并检验即可得答案.
【详解】
(1);
=-3+-1
=-1
(2)
=-1+-2
=+1
(3)
=
=
=
(4)解方程
去分母得:(x+3)2=4(x-3)+(x+3)(x-3)
去括号得:x2+6x+9=4x-12+x2-9
移项得:2x=-30
解得x=-15
检验:x=-15 是原方程的根
本题考查二次根式的计算、分式的减法及解分式方程,熟练掌握运算法则是解题关键.
16、(1);(2)不等式组无解.
【解析】
(1)根据二次根式的运算顺序及运算法则进行计算即可求解;(2)分别求得两个不等式的解集,根据不等式解集确定方法即可求得不等式组的解集.
【详解】
(1)原式
(2)
解不等式①得,;
解不等式②得,,
所以不等式组无解.
本题考查了二次根式的混合运算及一元一次不等式组的解法,熟练运用相关知识是解决问题的关键.
17、(1)A,90;(2).
【解析】
(1)根据正方形的性质得AB=AD,∠BAD=90°,则根据旋转的定义得到△ADE绕点A顺时针旋转90°后与△ABF重合;
(2)根据旋转的性质得BF=DE,S△ABF=S△ADE,利用CF=CB+BF=8得到BC+DE=8,再加上CE=CD-DE=BC-DE=4,于是可计算出BC=6,于是得到结论.
【详解】
解:(1)∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴△ADE绕点A顺时针旋转90°后与△ABF重合,
即旋转中心是点A,旋转了90度;
故答案为A,90;
(2)∵△ADE绕点A顺时针旋转90°后与△ABF重合,
∴BF=DE,S△ABF=S△ADE,
而CF=CB+BF=8,
∴BC+DE=8,
∵CE=CD-DE=BC-DE=4,
∴BC=6,
∴AC= BC=6.
故答案为(1)A,90;(2).
本题考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.旋转有三要素:旋转中心; 旋转方向; 旋转角度.也考查了正方形的性质.
18、(1)这个云梯的底端B离墙20米;(2)梯子的底部在水平方向右滑动了4米.
【解析】
(1)由题意得OA=15米,AB-OB=5米,根据勾股定理OA2+OB2=AB2,可求出梯子底端离墙有多远;
(2)由题意得此时CO=7米,CD=AB=25米,由勾股定理可得出此时的OD,继而能和(1)的OB进行比较.
【详解】
解:(1)设梯子的长度为米,则云梯底端B离墙为米。
这个云梯的底端B离墙20米。
(2)∵
∴=576
∴
∴
梯子的底部在水平方向右滑动了4米。
此题主要考查了勾股定理得应用,关键是正确理解题意,掌握直角三角形两直角边的平方和等于斜边的平方.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、a=-1
【解析】
根据分式方程的解法求出方程的解,然后根据方程有增根,则x=-5,从而得出a的值.
【详解】
去分母可得:1+a=x+5, 解得:x=a-2, ∵分式方程有增根, ∴x=-5,即a-2=-5,
解得:a=-1.
本题主要考查的是分式方程的解得情况,属于中等难度的题型.分式方程有增根是因为整式方程的解会使得分式的分母为零.
20、
【解析】
由条件可求得为等边三角形,则可求得的长,在中,由勾股定理可求得的长.
【详解】
,
,
四边形为矩形
,
为等边三角形,
,
,
在中,由勾股定理可求得.
故答案为:.
本题主要考查矩形的性质,掌握矩形的对角线相等且互相平分是解题的关键.
21、
【解析】
根据矩形的性质就可以得出EF,AP互相平分,且EF=AP,根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.
【详解】
解:∵PE⊥AB,PF⊥AC,∠BAC=90°,
∴∠EAF=∠AEP=∠AFP=90°,
∴四边形AEPF是矩形,
∴EF,AP互相平分.且EF=AP,
∴EF,AP的交点就是M点,
∵当AP的值最小时,AM的值就最小,
∴当AP⊥BC时,AP的值最小,即AM的值最小.
∵AP×BC=AB×AC,
∴AP×BC=AB×AC,
在Rt△ABC中,由勾股定理,得BC==10,
∵AB=6,AC=8,
∴10AP=6×8,
∴AP=
∴AM=,
故答案为:.
考点:(1)、矩形的性质的运用;(2)、勾股定理的运用;(3)、三角形的面积公式
22、y=2x+1
【解析】
解:已知一次函数y=kx+b与y=2x+1平行,可得k=2,
又因函数经过点(-3,4),代入得4=-6+b,解得,b=1,
所以函数的表达式为y=2x+1.
23、
【解析】
将x的值代入x2-2x+2028=(x-1)2+2027,根据二次根式的运算法则计算可得.
【详解】
解:当x=1-时,
x2-2x+2028=(x-1)2+2027
=(1--1)2+2027
=(-)2+2027,
=3+2027
=1,
故答案为:1.
本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质和运算法则及完全平方公式.
二、解答题(本大题共3个小题,共30分)
24、(1)5900,6000;(2)见解析;(3)当0≤x≤1000或x=3000时,两家林场购买一样,当1000<x<3000时,到甲林场购买合算;当x>3000时,到乙林场购买合算.
【解析】
试题分析: (1)由单价×数量就可以得出购买树苗需要的费用;
(2)根据分段函数的表示法,甲林场分或两种情况 .乙林场分或两种情况.由由单价×数量就可以得出购买树苗需要的费用表示出甲、乙与之间的函数关系式;
(3)分类讨论,当,时,时,表示出甲、乙的关系式,就可以求出结论.
试题解析:(1)由题意,得.
甲=4×1000+3.8(1500﹣1000)=5900元,
乙=4×1500=6000元;
故答案为5900,6000;
(2)当时,
甲
时.
甲
∴甲(取整数).
当时,
乙
当时,
乙
∴乙(取整数).
(3)由题意,得
当时,两家林场单价一样,
∴到两家林场购买所需要的费用一样.
当时,甲林场有优惠而乙林场无优惠,
∴当时,到甲林场优惠;
当时,甲乙
当甲=乙时
解得:
∴当时,到两家林场购买的费用一样;
当甲<乙时,
时,到甲林场购买合算;
当甲>乙时,
解得:
∴当时,到乙林场购买合算.
综上所述,当或时,两家林场购买一样,
当时,到甲林场购买合算;
当时,到乙林场购买合算.
25、甲将被录取
【解析】
试题分析:根据题意先算出甲、乙两位应聘者的加权平均数,再进行比较,即可得出答案.
试题解析:甲的平均成绩为:(87×6+90×4)÷10=88.2(分),
乙的平均成绩为:(91×6+82×4)÷10=87.4(分),
因为甲的平均分数较高,所以甲将被录取.
考点:加权平均数.
26、方程的根
【解析】
(1)根据方程的系数结合根的判别式,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;
(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.
【详解】
(1)∵关于x的一元二次方程x1﹣1(k﹣a)x+k(k+1)=0有两个不相等的实数根,
∴△=[﹣1(k﹣1)]1﹣4k(k﹣1)=﹣16k+4>0,
解得:k< .
(1)当k=0时,原方程为x1+1x=x(x+1)=0,
解得:x1=0,x1=﹣1.
∴当k=0时,方程的根为0和﹣1.
本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程.
题号
一
二
三
四
五
总分
得分
甲
乙
平均数
9
8
方差
1
1
甲林场
乙林场
购树苗数量
销售单价
购树苗数量
销售单价
不超过1000棵时
4元/棵
不超过2000棵时
4元/棵
超过1000棵的部分
3.8元/棵
超过2000棵的部分
3.6元/棵
应聘者
面试
笔试
甲
87
90
乙
91
82
2024年天津市河北区扶轮中学数学九上开学调研试题【含答案】: 这是一份2024年天津市河北区扶轮中学数学九上开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年黑龙江省红光农场学校九年级数学第一学期开学统考模拟试题【含答案】: 这是一份2024-2025学年黑龙江省红光农场学校九年级数学第一学期开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
[数学]2024年天津河北区天津市红光中学中考真题模拟数学试卷(仿真卷)(原题版+解析版): 这是一份[数学]2024年天津河北区天津市红光中学中考真题模拟数学试卷(仿真卷)(原题版+解析版),文件包含数学2024年天津河北区天津市红光中学中考真题模拟数学试卷仿真卷解析版pdf、数学2024年天津河北区天津市红光中学中考真题模拟数学试卷仿真卷原题版pdf等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。