- 人教版九年级数学上册《知识解读•题型专练》第06讲一元二次方程应用(二)(知识解读+真题演练+课后巩固)(原卷版+解析) 试卷 0 次下载
- 人教版九年级数学上册《知识解读•题型专练》专题01二次函数的相关概念(五大题型)(题型专练)(原卷版+解析) 试卷 0 次下载
- 人教版九年级数学上册《知识解读•题型专练》专题02二次函数y=ax²的图像和性质(七大类型)(题型专练)(原卷版+解析) 试卷 0 次下载
- 人教版九年级数学上册《知识解读•题型专练》第02讲二次函数y=ax²的图像和性质(知识解读+真题演练+课后巩固)(原卷版+解析) 试卷 0 次下载
- 人教版九年级数学上册《知识解读•题型专练》专题03二次函数y=ax²+c的图像和性质(六大类型)(题型专练)(原卷版+解析) 试卷 0 次下载
数学九年级上册第二十二章 二次函数22.1 二次函数的图象和性质22.1.1 二次函数当堂达标检测题
展开会根据简单的实际应用列二次函数解析式;
能根据二次函数定义求参数。
知识点 1 :二次函数的概念
二次函数的概念:
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0)的函数, 叫做二次函数.
其中x是自变量,a,b,c分别表示函数解析式的二次项系数、一次项系数、常数项.
注意:二次函数的判断方法:
①函数关系式是整式;
②化简后自变量的最高次数是2;
③二次项系数不为0.
二次函数的结构特征:
⑴ 等号左边是函数,右边是关于自变量的二次式,的最高次数是2.
⑵ 是常数,是二次项系数,是一次项系数,是常数项
注意:二次函数除了一般式y=ax²+bx+c(a,b,c是常数,a≠0)外,还有y=ax²,y=ax²+bx,y=ax²+c。
知识点 2 :二次函数的值
根据题意把x值代入函数解析式,求出y值即可。
【题型1二次函数的判段】
【典例1】(2023•江都区模拟)下列函数是二次函数的是( )
A.y=2xB.y=C.y=x2D.y=
【变式1-1】(2022秋•河池期末)下列函数中,是二次函数的是( )
A.y=3x﹣1B.y=x3+2
C.y=(x﹣2)2﹣x2D.y=x(4﹣x)
【变式1-2】(2023九上·亳州期末)下列各式中,y是x的二次函数的是( )
A.y=3x−1 B.y=1x2 C.y=3x2+x−1D.y=2x3−1
【变式1-3】(2022九上·佛山月考)下列四个函数中是二次函数的是( )
A.y=3x−2B.y=2x2+2C.y=x2−1D.y=5x
【题型2 利用二次函数的概念含参数取值范围】
【典例2】(2022秋•普兰店区期末)是二次函数,则m的值是( )
A.m=0B.m=﹣1C.m=1D.m=±1
【变式2-1】(2022九上·汽开区期末)若函数y=(m−2)x2+5x+6是二次函数,则有( )
A.m≠0B.m≠2C.x≠0D.x≠2
【变式2-2】(2023九上·诸暨期末)已知y关于x的二次函数解析式为y=(m−2)x|m|,则m=( )
A.±2B.1C.-2D.±1
【变式2-3】(2022秋•开封期末)已知函数y=(m+1)x|m|+1﹣2x+1是二次函数,则m= .
【题型3 二次函数的一般形式】
【典例3】(2022秋•济南期末)二次函数y=x2﹣6x﹣1的二次项系数、一次项系数和常数项分别是( )
A.1,﹣6,﹣1B.1,6,1C.0,﹣6,1D.0,6,﹣1
【变式3-1】(2022秋•玉州区期中)函数y=3x2﹣6x+1的一次项系数是( )
A.﹣6B.1C.3D.6
【变式3-2】(2022九上·汕尾期中)二次函数y=x2−6x−1的二次项系数、一次项系数和常数项分别是( )
A.1,-6,-1B.1,6,1 C.0,-6,1 D.0,6,-1
【变式3-3】(2022九上·北仑期中)二次函数y=5x(x−1)的一次项系数是( )
A.1B.-1C.2D.-5
【题型4 二次函数的函数值】
【典例4】若点A(−1,y1)在抛物线y=2x2上,则y1= .
【变式4-1】若点A(3,y)在抛物线y=3x2﹣6x+1上,则y= .
【变式4-2】(2022九上·富阳期中)对于二次函数y=x2-2mx-3,当x=2时的函数值与x=8时的函数值相等时,m= .
【题型5 根据实际问题列出二次函数】
【典例5】(2022秋•西湖区期末)在一个边长为1的正方形中挖去一个边长为x(0<x<1)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数表达式为( )
A.y=x2B.y=1﹣x2C.y=x2﹣1D.y=1﹣2x
【变式5-1】(2021秋•珠晖区校级月考)现有一根长为50cm的铁丝,把它弯成一个矩形,设矩形的面积为ycm2,一边长为xcm,则y与x之间的函数表达式为( )
A.y=x(50﹣x)B.y=x(50﹣2x)C.y=x(25﹣2x)D.y=x(25﹣x)
【变式5-2】(2021九上·邗江月考)一台机器原价50万元,如果每年的折旧率是x,两年后这台机器的价格为y万元,则y与x的函数关系式为 .
【变式5-3】(2021秋•江油市期末)n个球队参加篮球比赛,每两队之间进行一场比赛,比赛的场次数m与球队数n(n≥2)之间的函数关系是 .
1.(2023•立山区一模)下列函数是二次函数的是( )
A.y=x+B.y=3(x﹣1)2C.y=ax2+bx+cD.y=+3x
2.(2021•饶平县校级模拟)若函数y=(a﹣1)x2+2x+a2﹣1是关于x的二次函数,则( )
A.a≠1B.a≠﹣1C.a=1D.a=±1
3.(2023•郁南县校级模拟)关于x的函数y=(a﹣b)x2+1是二次函数的条件是( )
A.a≠0B.a≠bC.b=0D.a=0
4.(2023•丰台区校级模拟)如图,正方形ABCD和⊙O的周长之和为20cm,设圆的半径为xcm,正方形的边长为ycm,阴影部分的面积为Scm2.当x在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是( )
A.一次函数关系,一次函数关系
B.一次函数关系,二次函数关系
C.二次函数关系,二次函数关系
D.二次函数关系,一次函数关系
6.(2023•槐荫区一模)一辆经营长途运输的货车在高速公路某加油站加满油后匀速行驶,下表记录了该货车加满油之后油箱内剩余油量y(升)与行驶时间x(小时)之间的相关对应数据,则y与x满足的函数关系是( )
A.正比例函数关系B.一次函数关系
C.反比例函数关系D.二次函数关系
7.(2023•宝山区一模)如图,用长为12米的篱笆围成一个矩形花圃,花圃一面靠墙(墙的长度超过12米),设花圃垂直于墙的一边长为x米,花圃面积为y平方米,那么y关于x的函数解析式为 .(不要求写出定义域)
8.(2022•红安县校级模拟)已知二次函数y=﹣x2+bx+3,当x=2时,y=3.则这个二次函数的表达式是 .
1.(2022秋•宣城期末)下列函数中,是二次函数的是( )
A.B.C.y=2x2﹣2x+2D.y=2x+2
2.(2021九上·上思期中)下列函数关系中,是二次函数的为( )
A.在弹性限度内,弹簧的长度y与所挂物体的质量x之间的关系.
B.距离一定时,火车行驶的时间t与速度v之间的关系
C.等边三角形的周长C与边长a之间的关系
D.圆的面积S与半径之间的关系
3.(2022秋•禹城市期末)二次函数y=x2﹣6x﹣1的一次项系数是( )
A.﹣1B.1C.﹣6D.6
4.(2022秋•肇源县期末)有二次函数y=xm﹣2﹣2x+1,则m的值是( )
A.4B.2C.0D.4或2
5.(2022秋•定远县期末)若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是( )
A.1B.﹣5C.﹣1D.﹣5或﹣1
6.(2022秋•济南期末)若函数y=(m+1)x2+2x+1是二次函数,则常数m的取值范围是( )
A.m=﹣1B.m>﹣1C.m<﹣1D.m≠﹣1
7.(2022秋•北仑区期中)二次函数y=5x(x﹣1)的一次项系数是( )
A.1B.﹣1C.2D.﹣5
8.(2022秋•中山市期中)已知函数y=(m+3)x2+1是二次函数,则m的取值范围为( )
A.m>﹣3B.m<﹣3C.m≠﹣3D.任意实数
9.(2021春•青秀区校级期末)下列二次函数中,二次项系数是﹣3的是( )
A.y=3x2﹣2x+5B.y=x2﹣3x+2C.y=﹣3x2﹣xD.y=x2﹣3
10.(2022春•西湖区校级月考)二次函数y=2x2﹣3的二次项系数、一次项系数和常数项分别是( )
A.2、0、﹣3B.2、﹣3、0C.2、3、0D.2、0、3
11.(2021秋•永年区期末)二次函数y=3x﹣x2的二次项系数是 ,一次项系数是 .
12.(2022秋•驿城区期末)二次函数y=3x﹣的二次项系数是
行驶时间x(小时)
0
1
2
2.5
剩余油量y(升)
100
80
60
50
第01讲 二次函数的相关概念
理解二次函数的概念;
会根据简单的实际应用列二次函数解析式;
能根据二次函数定义求参数。
知识点 1 :二次函数的概念
二次函数的概念:
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0)的函数, 叫做二次函数.
其中x是自变量,a,b,c分别表示函数解析式的二次项系数、一次项系数、常数项.
注意:二次函数的判断方法:
①函数关系式是整式;
②化简后自变量的最高次数是2;
③二次项系数不为0.
二次函数的结构特征:
⑴ 等号左边是函数,右边是关于自变量的二次式,的最高次数是2.
⑵ 是常数,是二次项系数,是一次项系数,是常数项
注意:二次函数除了一般式y=ax²+bx+c(a,b,c是常数,a≠0)外,还有y=ax²,y=ax²+bx,y=ax²+c。
知识点 2 :二次函数的值
根据题意把x值代入函数解析式,求出y值即可。
【题型1二次函数的判段】
【典例1】(2023•江都区模拟)下列函数是二次函数的是( )
A.y=2xB.y=C.y=x2D.y=
【答案】C
【解答】解:A、该函数不符合二次函数的定义,故本选项不符合题意;
B、该函数不符合二次函数的定义,故本选项不符合题意;
C、该函数符合二次函数的定义,故本选项符合题意;
D、该函数的右边不是整式,它不是二次函数,故本选项不符合题意;
故选:C.
【变式1-1】(2022秋•河池期末)下列函数中,是二次函数的是( )
A.y=3x﹣1B.y=x3+2
C.y=(x﹣2)2﹣x2D.y=x(4﹣x)
【答案】D
【解答】解:A、y=3x﹣1是一次函数,不符合题意;
B、y=x3+2中,x的次数是3,不是二次函数,不符合题意;
C、y=(x﹣2)2﹣x2可化为y=﹣4x+4是一次函数,不符合题意;
D、y=x(4﹣x)可化为y=4x﹣x2,是二次函数,符合题意.
故选:D.
【变式1-2】(2023九上·亳州期末)下列各式中,y是x的二次函数的是( )
A.y=3x−1 B.y=1x2 C.y=3x2+x−1D.y=2x3−1
【答案】C
【解析】解:A、y=3x-1是一次函数,故此选项不合题意;
B、y=1x2不是二次函数,故此选项不合题意;
C、y=3x2+x-1是二次函数,故此选项符合题意;
D、y=2x3-1不是二次函数,故此选项不合题意;
故答案为:C.
【变式1-3】(2022九上·佛山月考)下列四个函数中是二次函数的是( )
A.y=3x−2B.y=2x2+2C.y=x2−1D.y=5x
【答案】C
【解析】A.自变量的次数为1,不是二次函数,不符合题意;
B.分母中含有未知数,不是二次函数,不符合题意;
C.符合二次函数的定义,是二次函数,符合题意;
D.分母中含有未知数,不是二次函数,不符合题意.
故答案为:C.
【题型2 利用二次函数的概念含参数取值范围】
【典例2】(2022秋•普兰店区期末)是二次函数,则m的值是( )
A.m=0B.m=﹣1C.m=1D.m=±1
【答案】B
【解答】解:∵是二次函数,
∴m2+1=2且m﹣1≠0,
解得m=±1且m≠1,
∴m=﹣1.
故选:B.
【变式2-1】(2022九上·汽开区期末)若函数y=(m−2)x2+5x+6是二次函数,则有( )
A.m≠0B.m≠2C.x≠0D.x≠2
【答案】B
【解析】解:由题意得,m−2≠0,
解得m≠2.
故答案为:B.
【变式2-2】(2023九上·诸暨期末)已知y关于x的二次函数解析式为y=(m−2)x|m|,则m=( )
A.±2B.1C.-2D.±1
【答案】C
【解析】解:∵y关于x的二次函数解析式为y=(m−2)x|m| ,
∴|m|=2且m-2≠0,
解之:m=±2,m≠2,
∴m=-2.
故答案为:C.
【变式2-3】(2022秋•开封期末)已知函数y=(m+1)x|m|+1﹣2x+1是二次函数,则m= .
【答案】1.
【解答】解:由二次函数的定义可知,当时,该函数是二次函数,
∴,
∴m=1,
故答案为:1.
【题型3 二次函数的一般形式】
【典例3】(2022秋•济南期末)二次函数y=x2﹣6x﹣1的二次项系数、一次项系数和常数项分别是( )
A.1,﹣6,﹣1B.1,6,1C.0,﹣6,1D.0,6,﹣1
【答案】A
【解答】解:二次函数y=x2﹣6x﹣1,
∴二次项系数、一次项系数、常数项分别是1,﹣6,﹣1.
故选:A.
【变式3-1】(2022秋•玉州区期中)函数y=3x2﹣6x+1的一次项系数是( )
A.﹣6B.1C.3D.6
【答案】A
【解答】解:函数y=3x2﹣6x+1的一次项系数是﹣6.
故选:A.
【变式3-2】(2022九上·汕尾期中)二次函数y=x2−6x−1的二次项系数、一次项系数和常数项分别是( )
A.1,-6,-1B.1,6,1 C.0,-6,1 D.0,6,-1
【答案】A
【解析】解:二次函数y=x2−6x−1,
∴二次项系数、一次项系数、常数项分别是1,-6,-1.
故答案为:A.
【变式3-3】(2022九上·北仑期中)二次函数y=5x(x−1)的一次项系数是( )
A.1B.-1C.2D.-5
【答案】D
【解析】解:y=5x(x-1)=5x2-5x,
∴一次项的系数为-5.
故答案为:D.
【题型4 二次函数的函数值】
【典例4】若点A(−1,y1)在抛物线y=2x2上,则y1= .
【答案】2
【解答】解:∵若点A(−1,y1)在抛物线y=2x2上,
y1=2×(-1)2=2,
故答案为:2
【变式4-1】若点A(3,y)在抛物线y=3x2﹣6x+1上,则y= .
【答案】10
【解答】解:∵若点A(3,y)在抛物线y=3x2﹣6x+1上,
y=3×32-6×3+1=10,
故答案为:10
【变式4-2】(2022九上·富阳期中)对于二次函数y=x2-2mx-3,当x=2时的函数值与x=8时的函数值相等时,m= .
【答案】5
【解析】解:∵当x=2时的函数值与x=8时的函数值相等,
∴4-4m-3=64-16m-3
解之:m=5
故答案为:5
【题型5 根据实际问题列出二次函数】
【典例5】(2022秋•西湖区期末)在一个边长为1的正方形中挖去一个边长为x(0<x<1)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数表达式为( )
A.y=x2B.y=1﹣x2C.y=x2﹣1D.y=1﹣2x
【答案】B
【解答】解:设剩下部分的面积为y,则:y=1﹣x2(0<x<1),
故选:B.
【变式5-1】(2021秋•珠晖区校级月考)现有一根长为50cm的铁丝,把它弯成一个矩形,设矩形的面积为ycm2,一边长为xcm,则y与x之间的函数表达式为( )
A.y=x(50﹣x)B.y=x(50﹣2x)C.y=x(25﹣2x)D.y=x(25﹣x)
【答案】D
【解答】解:由题意得:矩形的另一边长=50÷2﹣x=25﹣x,
∴y=x(25﹣x).
故选:D.
【变式5-2】(2021九上·邗江月考)一台机器原价50万元,如果每年的折旧率是x,两年后这台机器的价格为y万元,则y与x的函数关系式为 .
【答案】y=50(1−x)2
【解答】解:由题意得:两年后的价格为:50×(1−x)×(1−x)=50(1−x)2,
故y与x的函数关系式是:y=50(1−x)2.
故答案为:y=50(1−x)2.
【变式5-3】(2021秋•江油市期末)n个球队参加篮球比赛,每两队之间进行一场比赛,比赛的场次数m与球队数n(n≥2)之间的函数关系是 .
【答案】m=n2﹣n.
【解答】解:m=n(n﹣1)=n2﹣n,
故答案为:m=n2﹣n
1.(2023•立山区一模)下列函数是二次函数的是( )
A.y=x+B.y=3(x﹣1)2C.y=ax2+bx+cD.y=+3x
【答案】B
【解答】解:A、y=x+是一次函数,不是二次函数,故本选项不符合题意;
B、y=3(x﹣1)2是二次函数,故本选项符合题意;
C、当a=0时,y=ax2+bx+c不是二次函数,故本选项不符合题意;
D、y=+3x是正比例函数,不是二次函数,故本选项不符合题意;
故选:B.
2.(2021•饶平县校级模拟)若函数y=(a﹣1)x2+2x+a2﹣1是关于x的二次函数,则( )
A.a≠1B.a≠﹣1C.a=1D.a=±1
【答案】A
【解答】解:由题意得:a﹣1≠0,
解得:a≠1,
故选:A.
3.(2023•郁南县校级模拟)关于x的函数y=(a﹣b)x2+1是二次函数的条件是( )
A.a≠0B.a≠bC.b=0D.a=0
【答案】B
【解答】解:当a﹣b≠0,即a≠b,则y=(a﹣b)x2+1是二次函数.
故选:B.
4.(2023•丰台区校级模拟)如图,正方形ABCD和⊙O的周长之和为20cm,设圆的半径为xcm,正方形的边长为ycm,阴影部分的面积为Scm2.当x在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是( )
A.一次函数关系,一次函数关系
B.一次函数关系,二次函数关系
C.二次函数关系,二次函数关系
D.二次函数关系,一次函数关系
【答案】B
【解答】解:由题意得,
4y+2πx=20,
∴2y+πx=10,
∴y=,
即y与x是一次函数关系,
∵S=y2﹣πx2,
即满足二次函数关系,
故选:B.
6.(2023•槐荫区一模)一辆经营长途运输的货车在高速公路某加油站加满油后匀速行驶,下表记录了该货车加满油之后油箱内剩余油量y(升)与行驶时间x(小时)之间的相关对应数据,则y与x满足的函数关系是( )
A.正比例函数关系B.一次函数关系
C.反比例函数关系D.二次函数关系
【答案】B
【解答】解:从表格可看出,货车每行驶一小时,耗油量为20升,即余油量y与行驶时间x成一次函数关系.
故选:B.
7.(2023•宝山区一模)如图,用长为12米的篱笆围成一个矩形花圃,花圃一面靠墙(墙的长度超过12米),设花圃垂直于墙的一边长为x米,花圃面积为y平方米,那么y关于x的函数解析式为 .(不要求写出定义域)
【答案】y=x(12﹣2x).
【解答】解:∵篱笆的总长为12米,花圃垂直于墙的一边长为x米,
∴花圃平行于墙的一边长为(12﹣2x)米.
根据题意得:y=x(12﹣2x).
故答案为:y=x(12﹣2x).
8.(2022•红安县校级模拟)已知二次函数y=﹣x2+bx+3,当x=2时,y=3.则这个二次函数的表达式是 .
【答案】见试题解答内容
【解答】解:∵二次函数y=﹣x2+bx+3,当x=2时,y=3,
∴3=﹣22+2b+3,
解得:b=2,
∴这个二次函数的表达式是:y=﹣x2+2x+3.
故答案为:y=﹣x2+2x+3.
1.(2022秋•宣城期末)下列函数中,是二次函数的是( )
A.B.C.y=2x2﹣2x+2D.y=2x+2
【答案】C
【解答】解;A.,关系式不是整式,故不是二次函数;
B.,关系式不是整式,故不是二次函数;
C.y=2x2﹣2x+2,自变量的次数是2,且二次项的系数不为零,故是二次函数;
D.y=2x+2,自变量的次数不是2,是一次函数,不是二次函数;
故选:C.
2.(2021九上·上思期中)下列函数关系中,是二次函数的为( )
A.在弹性限度内,弹簧的长度y与所挂物体的质量x之间的关系.
B.距离一定时,火车行驶的时间t与速度v之间的关系
C.等边三角形的周长C与边长a之间的关系
D.圆的面积S与半径之间的关系
【答案】D
【解答】解:A、关系式为:y=kx+b,是一次函数,不符合题意;
B、关系式为: t=sv ,是反比例函数,不符合题意;
C、关系式为: C=3a ,是正比例函数,不符合题意;
D、关系式为: S=πr2 ,是二次函数,符合题意.
故答案为:D.
3.(2022秋•禹城市期末)二次函数y=x2﹣6x﹣1的一次项系数是( )
A.﹣1B.1C.﹣6D.6
【答案】C
【解答】解:二次函数y=x2﹣6x﹣1的一次项系数是﹣6.
故选:C.
4.(2022秋•肇源县期末)有二次函数y=xm﹣2﹣2x+1,则m的值是( )
A.4B.2C.0D.4或2
【答案】A
【解答】解:∵函数y=xm﹣2﹣2x+1是二次函数,
∴m﹣2=2,
解得m=4.
故选:A.
5.(2022秋•定远县期末)若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是( )
A.1B.﹣5C.﹣1D.﹣5或﹣1
【答案】B
【解答】解:∵函数y=(a+1)x|a+3|﹣x+3是关于x的二次函数,
∴|a+3|=2且a+1≠0,
解得a=﹣5,
故选:B.
6.(2022秋•济南期末)若函数y=(m+1)x2+2x+1是二次函数,则常数m的取值范围是( )
A.m=﹣1B.m>﹣1C.m<﹣1D.m≠﹣1
【答案】D
【解答】解:根据题意得:m+1≠0,
解得:m≠﹣1.
故选:D.
7.(2022秋•北仑区期中)二次函数y=5x(x﹣1)的一次项系数是( )
A.1B.﹣1C.2D.﹣5
【答案】D
【解答】解:∵原二次函数可化为y=5x2﹣5x,
∴其一次项系数是﹣5.
故选:D.
8.(2022秋•中山市期中)已知函数y=(m+3)x2+1是二次函数,则m的取值范围为( )
A.m>﹣3B.m<﹣3C.m≠﹣3D.任意实数
【答案】C
【解答】解:由题意得:
m+3≠0,
∴m≠﹣3,
故选:C.
9.(2021春•青秀区校级期末)下列二次函数中,二次项系数是﹣3的是( )
A.y=3x2﹣2x+5B.y=x2﹣3x+2C.y=﹣3x2﹣xD.y=x2﹣3
【答案】C
【解答】解:A.y=3x2﹣2x+5二次项系数是3,不合题意;
B.y=x2﹣3x+2二次项系数是3,不合题意;
C.y=﹣3x2﹣x二次项系数是﹣3,符合题意;
D.y=x2﹣3二次项系数是1,不合题意;
故选:C.
10.(2022春•西湖区校级月考)二次函数y=2x2﹣3的二次项系数、一次项系数和常数项分别是( )
A.2、0、﹣3B.2、﹣3、0C.2、3、0D.2、0、3
【答案】A
【解答】解:二次函数y=2x2﹣3的二次项系数是2,一次项系数是0,常数项是﹣3,
故选:A.
11.(2021秋•永年区期末)二次函数y=3x﹣x2的二次项系数是 ,一次项系数是 .
【答案】﹣;3.
【解答】解:二次函数y=3x﹣x2的二次项系数是﹣,一次项系数是3.
故答案为:﹣;3.
12.(2022秋•驿城区期末)二次函数y=3x﹣的二次项系数是
【答案】﹣.
【解答】解:∵二次函数y=3x﹣x2=﹣x2+3x,
∴二次项系数是﹣.
故答案为:﹣.行驶时间x(小时)
0
1
2
2.5
剩余油量y(升)
100
80
60
50
初中数学人教版(2024)九年级上册21.1 一元二次方程一课一练: 这是一份初中数学人教版(2024)九年级上册<a href="/sx/tb_c10282_t7/?tag_id=28" target="_blank">21.1 一元二次方程一课一练</a>,共24页。
苏科版九年级下册第8章 统计和概率的简单应用8.2 货比三家课时练习: 这是一份苏科版九年级下册<a href="/sx/tb_c17349_t7/?tag_id=28" target="_blank">第8章 统计和概率的简单应用8.2 货比三家课时练习</a>,文件包含第01讲数据的收集与整理知识解读+真题演练+课后巩固原卷版docx、第01讲数据的收集与整理知识解读+真题演练+课后巩固解析版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
数学九年级下册6.3 相似图形练习题: 这是一份数学九年级下册<a href="/sx/tb_c104120_t7/?tag_id=28" target="_blank">6.3 相似图形练习题</a>,文件包含第01讲比例线段和相似图形知识解读+真题演练+课后巩固原卷版docx、第01讲比例线段和相似图形知识解读+真题演练+课后巩固解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。