2024年云南省玉溪市名校数学九年级第一学期开学调研试题【含答案】
展开这是一份2024年云南省玉溪市名校数学九年级第一学期开学调研试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,△ABC的周长为28,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为( )
A.1B.2C.3D.4
2、(4分)已知 x<3,则化简结果是()
A.-x-3B.x+3C.3-xD.x-3
3、(4分)下列变形是因式分解的是( )
A.x(x+1)=x2+xB.m2n+2n=n(m+2)
C.x2+x+1=x(x+1)+1D.x2+2x﹣3=(x﹣1)(x+3)
4、(4分)如图,正方形OABC的兩辺OA、OC分別在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是( )
A.(1,10)B.(-2,0)C.(2,10)或(-2,0)D.(10,2)或(-2,0)
5、(4分)某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为( )
A.0.1B.0.17C.0.33D.0.4
6、(4分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是( )
A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+3
7、(4分)如图所示的四边形,与选项中的四边形一定相似的是( )
A.B.
C.D.
8、(4分)下列二次根式中,最简二次根式是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为______.
10、(4分)某单位向一所希望小学赠送1080件文具,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设A型包装箱每个可以装件文具,根据题意列方程为 .
11、(4分)某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为分,分,,.那么成绩较为整齐的是______班.
12、(4分)某校四个植树小队,在植树节这天种下柏树的棵数分别为10,x,10,8,若这组数据的中位数和平均数相等,那么x=_____.
13、(4分)如图,若△DEF是由△ABC沿BC方向平移得到的,EF=5,EC=3,则平移的距离是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD是平行四边形,分别以AB,CD为边向外作等边△ABE和△CDF,连接AF,CE.求证:四边形AECF为平行四边形.
15、(8分)在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P为和谐点。
(1)求函数的图像上和谐点的坐标;
(2)若二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个和谐点(,),当0≤x≤m时,函数y=ax2+4x+c﹣(a≠0)的最小值为﹣3,最大值为1,则m的取值范围.
16、(8分)下面是小明化简的过程
解:= ①
= ②
=﹣ ③
(1)小明的解答是否正确?如有错误,错在第几步?
(2)求当x=时原代数式的值.
17、(10分)某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知1个篮球和2个足球共需116元;2个篮球和3个足球共需204元
求购买1个篮球和1个足球各需多少元?
若学校准备购进篮球和足球共40个,并且总费用不超过1800元,则篮球最多可购买多少个?
18、(10分)若关于x的分式方程=﹣2的解是非负数,求a的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若三角形的周长为28cm,则它的三条中位线组成的三角形的周长是______.
20、(4分)如图,在中,,,,点在上,以为对角线的所有中,的最小值是____.
21、(4分)已知数据,-7,, ,-2017,其中出现无理数的频率是________________.
22、(4分)如图,矩形ABCD中,对角线AC、BD交于点O,E为OB中点,且AE⊥BD,BD=4,则CD=____________________.
23、(4分)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组,并把它的解集在数轴上表示出来.
25、(10分)为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.
(1)每个文具盒、每支钢笔各多少元?
(2)若本次表彰活动,老师决定购买10件作为奖品,若购买个文具盒,10件奖品共需元,求与的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?
26、(12分)解不等式组:.并判断这个数是否为该不等式组的解.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据已知条件证明△AQB≌△EQB及△APC≌△DPC,再得出PQ是△ADE的中位线,根据题中数据,根据DE=BE+CD-BC求出DE的长度,最后由中位线的性质即可求出PQ的长度.
【详解】
解:∵BQ平分∠ABC,
∴∠ABQ=∠EBQ,
∵BQ⊥AE,
∴∠AQB=∠EQB=90°,
在△AQB与△EQB中
∴△AQB≌△EQB(ASA)
∴AQ=EQ,AB=BE
同理可得:△APC≌△DPC(ASA)
∴AP=DP,AC=DC,
∴P,Q分别为AD,AE的中点,
∴PQ是△ADE的中位线,
∴PQ=,
∵△ABC的周长为28,BC=12,
∴AB+AC=28-12=16,即BE+CD=16,
∴DE=BE+CD-BC=16-12=4
∴PQ=2
故答案为:B.
本题主要考查了中位线的性质,涉及全等三角形的判定及三角形周长计算的问题,解题的关键是根据全等三角形的性质得出中位线.
2、C
【解析】
被开方数可以写成完全平方式,根据二次根式的性质,x<3去绝对值即可.
【详解】
解: ∵x<3, ∴3-x>0,
∴原式=.
故选C.
本题考查了二次根式的化简,注意二次根式的结果为非负数,解题的关键是要掌握二次根式的性质: .
3、D
【解析】
根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.
【详解】
A、是整式的乘法,故A错误;
B、等式不成立,故B错误;
C、没把一个多项式转化成几个整式乘积的形式,故C错误;
D、把一个多项式转化成几个整式乘积的形式,故D正确;
故选:D.
此题考查因式分解的意义,解题关键在于掌握其定义
4、C
【解析】
根据题意,分顺时针旋转和逆时针旋转两种情况,求出点D′到x轴、y轴的距离,即可判断出旋转后点D的对应点D′的坐标是多少即可.
【详解】
解:因为点D(5,3)在边AB上,
所以AB=BC=5,BD=5-3=2;
(1)若把△CDB顺时针旋转90°,
则点D′在x轴上,OD′=2,
所以D′(-2,0);
(2)若把△CDB逆时针旋转90°,
则点D′到x轴的距离为10,到y轴的距离为2,
所以D′(2,10),
综上,旋转后点D的对应点D′的坐标为(-2,0)或(2,10).
故选C.
本题考查坐标与图形变化-旋转,考查了分类讨论思想的应用,解答此题的关键是要注意分顺时针旋转和逆时针旋转两种情况.
5、D
【解析】
首先根据频数分布直方图可以知道仰卧起坐次数在25~30之间的频数,然后除以总人数30,即可得到仰卧起坐次数在25~30之间的频率.
【详解】
解:∵从频数分布直方图可以知道仰卧起坐次数在25~30之间的频数为12,
∴学生仰卧起坐次数在25~30之间的频率为12÷30=0.1.
故选:D.
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
6、D
【解析】
试题分析:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),
设一次函数解析式为:y=kx+b,
∵过点A的一次函数的图象过点A(0,1),与正比例函数y=2x的图象相交于点B(1,2),
∴可得出方程组,
解得,
则这个一次函数的解析式为y=﹣x+1.
故选D.
考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.
7、D
【解析】
根据勾股定理求出四边形ABCD的四条边之比,根据相似多边形的判定方法判断即可.
【详解】
作AE⊥BC于E,
则四边形AECD为矩形,
∴EC=AD=1,AE=CD=3,
∴BE=4,
由勾股定理得,AB==5,
∴四边形ABCD的四条边之比为1:3:5:5,
D选项中,四条边之比为1:3:5:5,且对应角相等,
故选:D.
此题考查相似多边形的判定定理,两个多边形的对应角相等,对应边成比例,则这两个多边形相似,此题求出多边形的剩余边长是解题的关键,利用矩形的性质定理,勾股定理求出边长.
8、C
【解析】
根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.
【详解】
解:A、,则不是最简二次根式,本选项错误;
B、=2,则不是最简二次根式,本选项错误;
C、是最简二次根式,本选项正确;
D、,则不是最简二次根式,本选项错误.
本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
试题分析:∵直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D,OB=3,OD=2,∴AB=2,∴阴影部分的面积之和为3×2=1.故答案为1.
考点:中心对称.
10、
【解析】
单独使用B型包装箱比单独使用A型包装箱可少用12个;可列等量关系为:所用B型包装箱的数量+12=所用A型包装箱的数量,由此可得到所求的方程
【详解】
解:根据题意,得:
11、乙
【解析】
根据平均数与方差的实际意义即可解答.
【详解】
解:已知两班平均分相同,
且>,
故应该选择方差较小的,
即乙班.
本题考查方差的实际运用,在平均数相同时方差较小的结果稳定.
12、12或1
【解析】
先根据中位数和平均数的概念得到平均数等于 ,由题意得到=10或9,解出x即可.
【详解】
∵这组数据的中位数和平均数相等,
∴=10或9,
解得:x=12或1,
故答案是:12或1.
考查了中位数的概念:一组数据按从小到大排列,最中间那个数(或最中间两个数的平均数)就是这组数据的中位数.
13、1
【解析】
平移的距离为线段BE的长求出BE即可解决问题;
【详解】
∵BC=EF=5,EC=3,
∴BE=1,
∴平移距离是1,
故答案为:1.
本题考查平移的性质,解题的关键是理解题意,灵活运用所学知识解决问题.
三、解答题(本大题共5个小题,共48分)
14、见解析.
【解析】
由平行四边形的性质可得AB=CD,AD=BC,∠ABC=∠ADC,由等边三角形的性质可得BE=EA=AB=CD=CF=DF,∠EBA=∠CDF=60°,由“SAS”可证△ADF≌△CBE,可得EC=AF,由两组对边相等的四边形是平行四边形可证四边形AECF为平行四边形.
【详解】
∵四边形ABCD是平行四边形
∴AB=CD,AD=BC,∠ABC=∠ADC
∵△ABE和△CDF是等边三角形
∴BE=EA=AB=CD=CF=DF,∠EBA=∠CDF=60°
∴∠ADF=∠EBC,且AD=BC,BE=DF
∴△ADF≌△CBE(SAS)
∴EC=AF,且AE=CF
∴四边形AECF为平行四边形.
本题考查了平行四边形的判定和性质,等边三角形的性质,全等三角形的判定和性质,熟练运用平行四边形的判定和性质是本题的关键.
15、(1);(2)2≤m≤4
【解析】
(1)根据和谐点的横坐标与纵坐标相同,设和谐点的坐标为(a,a),代入可得关于a的方程,解方程可得答案.
(2)根据和谐点的概念令ax2+4x+c=x,即ax2+3x+c=0,由题意,△=32-4ac=0,即4ac=9,方程的根为=,从而求得a=-1,c=−,所以函数y=ax2+4x+c-=-x2+4x-3,根据函数解析式求得顶点坐标与纵坐标的交点坐标,根据y的取值,即可确定x的取值范围.
【详解】
(1)设和谐点的坐标为(a,a),则a=-2a+1
解得:a=,
∴函数的图像上和谐点的坐标为.
(2)令ax2+4x+c=x,即ax2+3x+c=0,
由题意,△=32﹣4ac=0,即4ac=9,
又方程的根为,
解得a=﹣1,c=.
故函数y=ax2+4x+c﹣=﹣x2+4x﹣3,
如下图,该函数图象顶点为(2,1),与y轴交点为(0,﹣3),由对称性,该函数图象也经过点(4,﹣3).
由于函数图象在对称轴x=2左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小,且当0≤x≤m时,函数y=﹣x2+4x﹣3的最小值为﹣3,最大值为1,
∴2≤m≤4.
本题是二次函数的综合题,考查了二次函数图象上点的坐标特征,二次函数的性质以及根的判别式等知识,正确理解和谐点的概念是解题的关键.
16、(1)第①步(2)
【解析】
(1)根据分式的乘除法可以明确小明在哪一步出错了,从而可以解答本题;
(2)根据分式的乘除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
【详解】
(1)小明的解答不正确,错在第①步;
(2)
=
=,
当x=时,原式=.
本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
17、(1)购买一个篮球需60元,购买一个足球需28元;(2)篮球最多可购买21个.
【解析】
(1)设购买一个篮球元,购买一个足球元,根据“1个篮球和2个足球共需116元,2个篮球和3个足球共需204元”,即可得出关于、的二元一次方程组,解之即可得出结论;
(2)设购买个篮球,则购买的足球数为,根据费用=单价×数量,分别求出篮球和足球的费用,二者相加便是总费用,总费用不超过1800元,列出关于的一元一次不等式,解之即可得出结论.
【详解】
解:设购买一个篮球的需x元,购买一个足球的需 y元,
依题意得,
解得,
答:购买一个篮球需60元,购买一个足球需28元;
设购买m个篮球,则足球数为,
依题意得:,
解得:,
而m为正整数,
,
答:篮球最多可购买21个.
本题考查了二元一次方程组的应用及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,正确列出一元一次不等式.
18、a≥﹣,且a≠.
【解析】
分析: 分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据x为非负数求出a的范围即可.
本题解析:分式方程去分母得:2x=3a﹣4x+4,
解得:x=,
根据题意得:≥0,且≠1,
解得:a≥﹣,且a≠.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、14cm
【解析】
根据三角形中位线定理得到EF=BC,DF=AB,DE=AC,根据三角形的周长公式计算即可.
【详解】
解:∵△ABC的周长为28,
∴AB+AC+BC=28cm,
∵点D、E、F分别是BC、AB、AC的中点,
∴EF=BC,DF=AB,DE=AC,
∴△DEF的周长=DE+EF+DF=(AC+BC+AB)=14(cm),
故答案为:14cm.
本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
20、6
【解析】
由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.
【详解】
∵四边形ADCE是平行四边形,
∴OD=OE,OA=OC.
∴当OD取最小值时,DE线段最短,此时OD⊥BC.
∴OD是△ABC的中位线,
∴,,
∴,
∵在Rt△ABC中,∠B=90°,
,,
∴,
∴.
故答案为:6.
本题考查了平行四边形的性质,三角形中位线的性质以及垂线段最短的知识.正确理解DE最小的条件是关键.
21、0.6
【解析】
用无理数的个数除以总个数即可.
【详解】
∵数据,-7,, ,-2017中无理数有, ,共3个,
∴出现无理数的频率是3÷5=0.6.
故答案为:0.6.
本题考查了无理数的定义,以及频率的计算,熟练运用频率公式计算是解题的关键.频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷总数
22、2
【解析】
分析:由于AE即是三角形ABO的中线也是高,得到三角形ABO是等腰三角形,所以AB=AO,再根据矩形的性质即可求出答案.
详解:∵E为OB中点,且AE⊥BD,
∴AB=AO,
∵四边形ABCD为矩形,∴CD=AB=AO=BO=BD=2.
点睛:本题考查了等腰三角形的判定和矩形的性质,解题的难点在于判定三角形ABO是等腰三角形.
23、1.
【解析】
利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解:
∵BD⊥CD,BD=4,CD=3,∴.
∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC.
∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC.
又∵AD=6,∴四边形EFGH的周长=6+5=1.
二、解答题(本大题共3个小题,共30分)
24、,数轴见解析.
【解析】
试题分析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
试题解析:解:解不等式5x+1>3(x﹣1),得:x>﹣2,解不等式x﹣1≤7﹣x,得:x≤4,则不等式组的解集为﹣2<x≤4,将解集表示在数轴上如下:
25、 (1);(2) 147元.
【解析】
(1)设每个文具盒x元,每支钢笔y元,由题意得:
,解之得:.
(2)由题意得:w=14x+15(10-x)=150-x,
∵w随x增大而减小,,
∴当x=3时,
W最大值=150-3=147,即最多花147元.
26、, 不是不等式组的解.
【解析】
先求出每个不等式的解集,再得出不等式组的解集,由x的取值范围即可得出结论.
【详解】
解.
解不等式(1)得:,
解不等式(2)得:,
所以不等式是。
∵>1
∴不是不等式组的解。
本题考查的是解一元一次不等式组及估算无理数的大小,根据题意求出x的取值范围是解答此题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024年云南省曲靖市名校九年级数学第一学期开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年云南省玉溪市红塔区第一区九年级数学第一学期开学考试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年河南省新乡、开封市名校联考九年级数学第一学期开学调研试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。