2024年浙江省杭州市采荷中学九上数学开学统考试题【含答案】
展开
这是一份2024年浙江省杭州市采荷中学九上数学开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)只用下列图形不.能.进行平面镶嵌的是( )
A.全等的三角形B.全等的四边形
C.全等的正五边形D.全等的正六边形
2、(4分)如图,在平行四边形ABCD中,对角线AC、BD交于点O,E是CD的中点,若OE=2,则AD的长为( )
A.2B.3
C.4D.5
3、(4分)如图,在正方形中,点是的中点,点是的中点,与相交于点,设.得到以下结论:
①;②;③则上述结论正确的是( )
A.①②B.①③
C.②③D.①②③
4、(4分)无论x取什么值,下面的分式中总有意义的是( )
A.B.C.D.
5、(4分)如图,中,,,点在反比例函数的图象上,交反比例函数的图象于点,且,则的值为( )
A.B.C.D.
6、(4分)一个菱形的边长为,面积为,则该菱形的两条对角线的长度之和为( )
A.B.C.D.
7、(4分)当a满足条件( )时,式子在实数范围内有意义.
A.a−3D.a≥−3
8、(4分)某班5位学生参加中考体育测试的成绩(单位:分)分别是:50、45、36、48、50,则这组数据的众数是( )
A.36B.45C.48D.50
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有_____种.
10、(4分)将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为___________。
11、(4分)根据图中的程序,当输入x=2时,输出结果y=________.
12、(4分)如图,将绕点旋转一定角度得到,点的对应点恰好落在边上.若,,则________.
13、(4分)如果多边形的每个外角都是45°,那么这个多边形的边数是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:;
如图,已知直线的解析式为,直的解析式为:,与x轴交于点C,与x轴交于点B,与交于点.
求k,b的值;求三角形ABC的面积.
15、(8分)先化简,再求值:,其中x是不等式≤x﹣3的最小整数解.
16、(8分)哈市某专卖店销售某品牌服装,设服装进价为80元,当每件服装售价为240元时,月销售为200件,该专卖店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每件价格每下降10元时,月销售量就会增加20件,设每件服装售价为x(元),该专卖店的月利润为y(元).
(1)求出y与x的函数关系式(不要求写出x的取值范围);
(2)该专卖店要获得最大月利润,售价应定为每件多少元?最大利润是多少?
17、(10分)如图,在四边形ABCD中,AD∥BC,AB=3,BC=5,连接BD,∠BAD的平分线分别交BD、BC于点E、F,且AE∥CD
(1)求AD的长;
(2)若∠C=30°,求CD的长.
18、(10分)观察下列一组方程:;;;;它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.
若也是“连根一元二次方程”,写出k的值,并解这个一元二次方程;
请写出第n个方程和它的根.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若分式 的值为零,则x=________.
20、(4分)已知y轴上的点P到原点的距离为7,则点P的坐标为_____.
21、(4分)如图,在△ABC中,AB=5,AC=6,BC=7,点D、E、F分别是边AB、AC、BC的中点,连接DE、DF、EF,则△DEF的周长是_____________。
22、(4分)有一道题“先化简,再求值:,其中”.小玲做题时把“”错抄成“”,她的计算结果正确吗?______.(填正确或错误)
23、(4分)现有两根长6分米和3分米的木条,小华想再找一根木条为老师制作一个直角三角形教具,则第三根木条的长度应该为___分米.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算或化简:(1);(2)
25、(10分)如图是一块地的平面图,AD=4m,CD=3m,AB=13m,BC=12m,∠ADC=90°,求这块地的面积.
26、(12分)某中学为了了解八年级学生的业余爱好,抽查了部分学生,并制如下表格和条形统计图:
请根据图完成下面题目:
(1)抽查人数为_____人,a=_____.
(2)请补全条形统计图;
(3)若该校八年级有800人,请你估算该校八年级业余爱好音乐的学生约有多少人?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
判断一种图形是否能够镶嵌,只要看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.根据以上结论逐一判断即可.
【详解】
解:A项,三角形的内角和是180°,是360°的约数,能镶嵌平面,不符合题意;
B项,四边形的内角和是360°,是360°的约数,能镶嵌平面,不符合题意;
C项,正五边形的一个内角的度数为180-360÷5=108,不是360的约数,不能镶嵌平面,符合题意;
D项,正六边形的一个内角的度数是180-360÷6=120,是360的约数,能镶嵌平面,不符合题意;故选C.
本题考查了平面镶嵌的知识,几何图形能镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.用一种正多边形单独镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.
2、C
【解析】
平行四边形中对角线互相平分,则点O是BD的中点,而E是CD边中点,根据三角形两边中点的连线平行于第三边且等于第三边的一半可得AD=1.
【详解】
解:∵四边形ABCD是平行四边形,
∴OB=OD,OA=OC.
又∵点E是CD边中点,
∴AD=2OE,即AD=1.
故选:C.
此题主要考查了平行四边形的性质及三角形中位线定理,三角形中位线性质应用比较广泛,尤其是在三角形、四边形方面起着非常重要作用.
3、D
【解析】
由正方形的性质和全等三角形的判定与性质,直角三角形的性质进行推理即可得出结论.
【详解】
解:如图,
(1)
所以①成立
(2)如图延长交延长线于点,
则:
∴为直角三角形斜边上的中线,是斜边的一半,即
所以②成立
(3) ∵
∴
∵
∴
所以③成立
故选:D
本题考查的正方形的性质,直角三角形的性质以及全等三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.
4、B
【解析】
根据分母等于0,分式无意义;分母不等于0,分式有意义对各选项举反例判断即可
【详解】
解:A.当x=0时,分式无意义,故本选项错误;
B. 对任意实数,x2+1≠0,分式有意义,故本选项正确;
C.当x=0时,分母都等于0,分式无意义,故本选项错误;
D. 当x=-1时,分式无意义,故本选项错误.
故选B
本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.
5、D
【解析】
过点A作AD⊥x轴,过点C作CE⊥x轴,过点B作BF⊥x轴,利用AA定理和平行证得△COE∽△OBF∽△AOD,然后根据相似三角形的性质求得,,根据反比例函数比例系数的几何意义求得,从而求得,从而求得k的值.
【详解】
解:过点A作AD⊥x轴,过点C作CE⊥x轴,过点B作BF⊥x轴
∴CE∥AD,∠CEO=∠BFO=90°
∵
∴∠COE+∠FOB=90°,∠ECO+∠COE=90°
∴∠ECO=∠FOB
∴△COE∽△OBF∽△AOD
又∵,
∴,
∴,
∴
∵点在反比例函数的图象上
∴
∴
∴,解得k=±8
又∵反比例函数位于第二象限,
∴k=-8
故选:D.
本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.
6、C
【解析】
如图,根据菱形的性质可得, ,,再根据菱形的面积为,可得①,由边长结合勾股定理可得②,由①②两式利用完全平方公式的变形可求得,进行求得,即可求得答案.
【详解】
如图所示:
四边形是菱形,
, ,,
面积为,
①
菱形的边长为,
②,
由①②两式可得:,
,
,
即该菱形的两条对角线的长度之和为,
故选C.
本题考查了菱形的性质,菱形的面积,勾股定理等,熟练掌握相关知识是解题的关键.
7、D
【解析】
根据二次根式有意义的条件是被开方数大于等于0,即可求得答案.
【详解】
解:根据题意知,要使在实数范围内有意义.
则,
解得:,
故选:D.
本题主要考查二次根式的意义,掌握二次根式中被开方数为非负数是解题的关键.
8、D
【解析】
根据众数的定义,找出这组数据中出现次数最多的数,即可求出答案.
【详解】
解:在这组数据50、45、36、48、50中,
50出现了2次,出现的次数最多,
则这组数据的众数是50,
故选D.
考查了众数,掌握众数的定义是本题的关键,众数是一组数据中出现次数最多的数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AB=AD,②AB=BD,③AD=BD,1种情况进行讨论.
【详解】
解:如图所示:
故答案是:1.
本题考查了等腰三角形的性质以及勾股定理的应用,关键是正确进行分类讨论.
10、y=3x-4
【解析】
试题分析:根据一次函数的平移的性质:左减右加,上加下减,向下平移4个单位长度,可知y=3x-4.
考点:一次函数的图像的平移
11、2
【解析】
∵x=2时,符合x>1的条件,
∴将x=2代入函数y=−x+4得:y=2.
故答案为2.
12、1
【解析】
利用含30度的直角三角形三边的关系得到BC=1AB=4,再根据旋转的性质得AD=AB,则可判断△ABD为等边三角形,所以BD=AB=1,然后计算BC-BD即可.
【详解】
解:∵∠BAC=90°,∠B=60°,
∴BC=1AB=4,
∵Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,
∴AD=AB,
而∠B=60°,
∴△ABD为等边三角形,
∴BD=AB=1,
∴CD=BC-BD=4-1=1.
故答案为:1.
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
13、1
【解析】
∵一个多边形的每个外角都等于45°,∴多边形的边数为360°÷45°=1.则这个多边形是八边形.
三、解答题(本大题共5个小题,共48分)
14、(1)3;(2),;的面积.
【解析】
先乘方再乘除,最后加减,有括号和绝对值的先算括号和绝对值里面的.
利用待定系数法求出k,b的值;
首先根据两个函数解析式计算出B、C两点坐标,然后再利用三角形的面积公式计算出的面积即可.
【详解】
解:
=
;
与交于点,
,,
解得,;
当时,,
解得,
则,
当时,,
解得,
则,
的面积:.
此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.同时考查了二次根式的混合运算.
15、
【解析】
先根据分式混合运算的法则把原式进行化简,再求出不等式的取值范围,找出符合条件的x的最小整数解代入进行计算即可.
【详解】
原式=
=
=
=,
解不等式≤x﹣3,得:x≥4,
则不等式得最小整数解为x=4,
当x=4时,分式无意义,
所以符合条件的x的最小整数解为x=5,
则原式=.
16、(1)y=−2x2+840x−54400;(2)售价应定为每件210元,最大利润是33800元.
【解析】
(1)由题意得到每件服装的利润为 x−80 元,则可得月销售量为 200+,再根据月利润等于总销量乘以每件服装的利润即可得到;
(2) 由(1)得到y=−2x2+840x−54400经过变形得到y=−2(x−210)2+33800,即可得到答案.
【详解】
解:(1)每件服装的利润为 x−80 元,月销售量为 200+,所以月利润:
y=(x-80)⋅( 200+)=(x−80)(680−2x)=−2x2+840x−54400,所以函数关系式为y=−2x2+840x−54400;
(2) y=−2x2+840x−54400=−2(x−210)2+33800
所以,当x=210时,y最大=33800 .
即售价应定为每件210元,最大利润是33800元.
答:售价应定为每件210元,最大利润是33800元.
本题考查一元二次函数的实际应用,解题的关键是读懂题意,得到等式关系.
17、 (1) 2;(2)
【解析】
分析:(1)根据等角对等边即可证得BF=AB,然后根据FC=BC-BF即可求解;(2)过B作AF的垂线BG,垂足为H. 由(1)得:四边形AFCD为平行四边形且AB=BF=3,在RT△BHF中求得BH的长,利用勾股定理即可求解.
详解:(1)AD∥BC,AE∥CD,
∴四边形AFCD是平行四边形
∴AD=CF
∵AF平分∠BAD
∴∠BAF=∠DAF
∵AD∥BC
∴∠DAF=∠AFB
∴∠BAF=∠AFB
∴AB=BF
∵AB=3,BC=5
∴BF=3
∴FC=5-3=2
∴AD=2.
(2)如图,
过点B作BH⊥AF交AF于H
由(1)得:四边形AFCD为平行四边形且AB=BF=3,
∴AF=CD,AF∥CD
∴FH=AH,∠AFB=∠C
∵∠C=30°
∴∠HFB=30°
∴BF=2BH
∵BF=3
∴BH=
∴FH=,
∴AF=2×=3
∴CD=3.
点睛:本题考查了平行四边形的性质与判定,勾股定理的应用,解本题的关键是正确的作出辅助线.
18、(1)x1=7,x2=8.(2)x1=n-1,x2=n.
【解析】
(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k值即可解题,(2)找到规律,十字相乘的方法即可求解.
【详解】
解:(1)由题意可得k=-15,则原方程为x2-15x+56=0,则(x-7)·(x-8)=0,解得x1=7,x2=8.
(2)第n个方程为x2-(2n-1)x+n(n-1)=0,(x-n)(x-n+1)=0,解得x1=n-1,x2=n.
本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
依题意得x2-x-2=1,解得x=2或-1,
∵x+1≠1,即x≠-1,
∴x=2.
此题考查的是对分式的值为1的条件的理解和因式分解的方法的运用,该类型的题易忽略分母不为1这个条件.
20、(0,7)或(0,-7)
【解析】
点P在y轴上,分两种情况:正方向和负方向,即可得出点P的坐标为(0,7)或(0,-7).
【详解】
∵点P在y轴上,分两种情况:正方向和负方向,点P到原点的距离为7
∴点P的坐标为(0,7)或(0,-7).
此题主要考查平面直角坐标系中点的坐标,只告知点到原点的距离,要分两种情况,不要遗漏.
21、9
【解析】
根据三角形中位线定理求出DE、DF、EF即可解决问题.
【详解】
解:∵点D、E、F分别是边AB、AC、BC的中点
∴
∴
∴△DEF的周长是:
本题考查了三角形中位线,熟练掌握三角形中位线定理是解题的关键.
22、正确
【解析】
先去括号,再把除法变为乘法化简,化简后代入数值判断即可.
【详解】
解:,
因为x=或x=时,x2的值均为3,所以原式的计算结果都为7,
所以把“”错抄成“”,计算结果也是正确的,
故答案为:正确.
本题考查分式的化简求值,应将除法转化为乘法来做,并分解因式、约分,得到化简的目的.同时也考查了学生的计算能力.
23、或3
【解析】
根据勾股定理解答即可.
【详解】
解:第三根木条的长度应该为或分米;
故答案为或3..
此题考查勾股定理,关键是根据勾股定理解答.
二、解答题(本大题共3个小题,共30分)
24、(1);(2).
【解析】
(1)选逐项化简,再合并同类项或同类二次根式即可;
(2)先计算二次根式的乘法和除法,再合并同类项即可.
【详解】
(1)
=4--4+2
=;
(2)
=a+-a
=.
本题考查了二次根式的混合运算,熟练掌握二次根式的性质及运算法则是解答本题的关键.
25、24m2
【解析】
连接AC,利用勾股定理逆定理可以得出△ABC是直角三角形,用△ABC的面积减去△ACD的面积就是所求的面积.
【详解】
连接AC ,
∵∠ADC=90°
∴在Rt△ADC中,AC2= AD2+CD2=42+32=25,
∵AC2+BC2=25+122=169, AB2=132=169,
∴AC2+BC2= AB2 ,∴∠ACB=90°,
∴S=S△ACB-S△ADC=×12×5-×4×3=24m2
答:这块地的面积是24平方米
考点:1.勾股定理的逆定理2.勾股定理
26、(1)100;0.3;(2)补图见解析;(3)280人.
【解析】
(1)根据爱好体育的有30人,频率为0.25可求出调查的人数,进而可得出a、b值;(2)根据b值补全条形统计图即可;(3)用爱好音乐的学生所占百分比乘以八年级的人数即可得答案.
【详解】
(1)25÷0.25=100(人),
∴a=30÷100=0.3,
故答案为:100;0.3
(2)b=100×0.35=35(人),
补全条形统计图如图:
(3)800×0.35=280(人)
答:该校八年级业余爱好音乐的学生约有280人.
本题考查读条形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
题号
一
二
三
四
五
总分
得分
频数
频率
体育
25
0.25
美术
30
a
音乐
b
0.35
其他
10
0.1
相关试卷
这是一份浙江省杭州市采荷中学2023-2024学年九年级数学第一学期期末检测试题含答案,共7页。
这是一份浙江省杭州市采荷中学2023-2024学年八上数学期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列图形中,轴对称图形的个数是,下列运算正确的是等内容,欢迎下载使用。
这是一份2022-2023学年浙江省杭州市采荷中学七下数学期末检测试题含答案,共7页。试卷主要包含了下列等式正确的是,若,则下列不等式中成立的是,如图,点C在反比例函数y=,已知一次函数y=等内容,欢迎下载使用。