终身会员
搜索
    上传资料 赚现金
    2024年浙江省余姚市兰江中学数学九上开学教学质量检测试题【含答案】
    立即下载
    加入资料篮
    2024年浙江省余姚市兰江中学数学九上开学教学质量检测试题【含答案】01
    2024年浙江省余姚市兰江中学数学九上开学教学质量检测试题【含答案】02
    2024年浙江省余姚市兰江中学数学九上开学教学质量检测试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年浙江省余姚市兰江中学数学九上开学教学质量检测试题【含答案】

    展开
    这是一份2024年浙江省余姚市兰江中学数学九上开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)把一元二次方程化为一般形式,正确的是( )
    A.B.C.D.
    2、(4分)如图,已知一次函数,随着的增大而增大,且,则在直角坐标系中它的图象大致是( )
    A.B.C.D.
    3、(4分)给出下列命题,其中假命题的个数是( )
    四条边相等的四边形是正方形;
    两组邻边分别相等的四边形是平行四边形;
    有一个角是直角的平行四边形是矩形;
    矩形、平行四边形都是轴对称图形.
    A.B.C.D.
    4、(4分)已知一次函数y=(2m﹣1)x+3,如果函数值y随x的增大而减小,那么m的取值范围为( )
    A.m<2B.C.D.m>0
    5、(4分)已知△ABC中,AB=8,BC=15,AC=17,则下列结论无法判断的是( )
    A.△ABC是直角三角形,且AC为斜边
    B.△ABC是直角三角形,且∠ABC=90°
    C.△ABC的面积为60
    D.△ABC是直角三角形,且∠A=60°
    6、(4分)估计5﹣的值应在( )
    A.4和5之间B.5和6之间C.6和7之间D.7和8之间
    7、(4分)函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象可能是( )
    A.B.C.D.
    8、(4分)如图,已知点A(0,9),点B是x轴正半轴上的一动点,以AB为边作等腰直角三角形ABC使点C在第一象限,∠BAC=90°.设点B的横坐标为x,点C的纵坐标为y则表示y与x的函数关系的图象大致是( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)方程x2=2x的解是__________.
    10、(4分)观察分析下列数据:0,,,-3,,,,…,根据数据排列的规律得到第10个数据应是__________.
    11、(4分)分解因式:2a3﹣8a=________.
    12、(4分)如图,在中,角是边上的一点,作垂直, 垂直,垂足分别为,则的最小值是______.
    13、(4分)如图,已知矩形ABCD中,对角线AC、BD相交于O,AE⊥BD于E,若AB=6,AD=8,则AE=______
    三、解答题(本大题共5个小题,共48分)
    14、(12分)解方程:x2- 4x= 1.
    15、(8分)为了更好治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:
    经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少3万元.
    (1)求a,b的值;
    (2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;
    (3)在(2)问的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.
    16、(8分)如图,在平面直角坐标系中有△ABC,其中A(﹣3,4),B(﹣4,2),C(﹣2,1).把△ABC绕原点顺时针旋转90°,得到△A1B1C1.再把△A1B1C1向左平移2个单位,向下平移5个单位得到△A2B2C2.
    (1)画出△A1B1C1和△A2B2C2.
    (2)直接写出点B1、B2坐标.
    (3)P(a,b)是△ABC的AC边上任意一点,△ABC经旋转平移后P对应的点分别为P1、P2,请直接写出点P1、P2的坐标.
    17、(10分)阅读以下例题:解不等式:(x  4) (x 1)  1
    解:①当 x  4  1 ,则 x 1  1
    即可以写成:
    解不等式组得:
    ②当若 x  4  1 ,则 x 1  1
    即可以写成:
    解不等式组得:
    综合以上两种情况:不等式解集: x  1或.
    (以上解法依据:若ab  1 ,则a,b 同号)请你模仿例题的解法,解不等式:
    (1) (x 1)(x  2)  1;
    (2) (x  2)(x  3)  1.
    18、(10分)某中学积极开展跳绳锻炼,一次体育測试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和頻数分布直方图,如图:
    (1)补全频数分布表和频数分布直方图;
    (2)表中组距是 次,组数是 组;
    (3)跳绳次数在范围的学生有 人,全班共有 人;
    (4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在△ABC中,AB=BC=4,S△ABC=4,点P、Q、K分别为线段AB、BC、AC上任意一点,则PK+QK的最小值为_______
    20、(4分)有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数字不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使关于的分式方程有正实数解的概率为________.
    21、(4分)如图,等腰△ABC中,AB=AC,AB的垂直平分线MN交边AC于点D,且∠DBC=15°,则∠A的度数是_______.
    22、(4分)若分式 的值为零,则x=________.
    23、(4分)如图,△ACB和△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边DE上,若,则=___.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)求下列分式的值:,并从x=0,﹣1,﹣2中选一个适当的值,计算分式的值.
    25、(10分)如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.
    (1)求证:四边形AGPH是矩形;
    (2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.

    26、(12分)如图,中,,,.动点、均从顶点同时出发,点在边上运动,点在边上运动.已知点的运动速度是.当运动停止时,由,,构成的三角形恰好与相似.
    (1)试求点的运动速度;
    (2)求出此时、两点间的距离.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),首先把方程左边的两式相乘,再移项使方程右边变为0,然后合并同类项即可.
    【详解】
    由得
    故选:D
    本题考查了一元二次方程的一般形式.去括号的过程中要注意符号的变化,不要漏乘,移项时要注意符号的变化.
    2、A
    【解析】
    首先根据一次函数的增减性确定k的符号,然后根据确定b的符号,从而根据一次函数的性质确定其图形的位置即可.
    【详解】
    ∵随的增大而增大,
    ∴.
    又∵,
    ∴,
    ∴一次函数过第一、三、四象限,
    故选A.
    本题考查的是一次函数的图象与系数的关系,熟知函数y=kx+b(k≠0)中,当k>0,b<0时函数的图象在一、三、四象限是解答此题的关键.
    3、C
    【解析】
    根据平行四边形、矩形、正方形的判定以及轴对称的性质可知.
    【详解】
    解:①四条边相等的四边形是菱形,故原命题是假命题;
    ②两组邻边分别相等的四边形无法确定形状,故原命题是假命题;
    ③有一个角是直角的平行四边形是矩形,正确,故原命题是真命题;
    ④矩形是轴对称图形,平行四边形不是轴对称图形,故原命题是假命题.
    故选C.
    本题主要考查平行四边形、矩形、正方形的判定以及轴对称的性质.
    4、C
    【解析】
    根据一次函数的性质,当函数值y随自变量x的增大而减小时,那么k<0,由此可得不等式2m﹣1<0,解不等式即可求得m的取值范围.
    【详解】
    ∵函数值y随自变量x的增大而减小,
    ∴2m﹣1<0,
    ∴m<.
    故选C.
    本题考查了一次函数的性质,熟练运用一次函数的性质是解决问题的关键.
    5、D
    【解析】
    试题解析:∵AB=8,BC=15,CA=17,
    ∴AB2=64,BC2=225,CA2=289,
    ∴AB2+BC2=CA2,
    ∴△ABC是直角三角形,因为∠B的对边为17最大,所以AC为斜边,∠ABC=90°,
    ∴△ABC的面积是×8×15=60,
    故错误的选项是D.
    故选D.
    6、D
    【解析】
    先合并后,再根据无理数的估计解答即可.
    【详解】
    5−=5−2=3=,
    ∵7<<8,
    ∴5−的值应在7和8之间,
    故选D.
    本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.
    7、D
    【解析】
    【分析】分两种情况分析:当k>0或当k<0时.
    【详解】当k>0时,直线经过第一、二、三象限,双曲线在第一、三象限;
    当k<0时,直线经过第二、三、四象限,双曲线在第二、四象限.
    故选:D
    【点睛】本题考核知识点:一次函数和反比例函数的图象. 解题关键点:理解两种函数的性质.
    8、A
    【解析】
    过点C作CD⊥y轴于点D,证明△CDA≌△AOB(AAS),则AD=OB=x,y=OA+AD=9+x,即可求解.
    【详解】
    解:过点C作CD⊥y轴于点D,
    ∵∠OAB+∠OBA=90°,∠OAB+∠CAD=90°,
    ∴∠CAD=∠ABO,
    ∵∠CDA=∠AOB=90°,AB=AC,
    ∴△CDA≌△AOB(AAS),
    ∴AD=OB=x,
    y=OA+AD=9+x,
    故选:A.
    本题主要考查全等三角形的性质及一次函数的图象,掌握一次函数的图象及全等三角形的性质是解题的关键
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、x1=0, x2=2
    【解析】
    利用因式分解法解方程即可得到答案.
    【详解】
    解:原方程化为:
    所以:
    所以: 或
    解得:
    故答案为:
    本题考查的是一元二次方程的解法,熟练掌握一元二次方程的解法是关键.
    10、1
    【解析】
    通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.
    【详解】
    解:由题意知道:题目中的数据可以整理为:,,…,
    ∴第13个答案为:.
    故答案为:1.
    此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.
    11、2a(a+2)(a﹣2)
    【解析】
    要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,

    12、
    【解析】
    根据已知条件得出四边形AEPF为矩形,得出EF=AP,要使EF最小,只要AP最小即可,根据垂线段最短得出即可.
    【详解】
    连接AP,
    四边形AFPE是矩形,
    要使EF最小,只要AP最小即可,
    过点A作于P,此时AP最小,
    在直角三角形中,
    由勾股定理得:BC=5,
    由三角形面积公式得:
    ,
    即,
    故答案为:.
    本题是矩形的判定与性质和直角三角形结合考查的题型,找出与EF相等的线段,结合垂线段最短的性质是解题的关键.
    13、4.8.
    【解析】
    矩形各内角为直角,在直角△ABD中,已知AB、AD,根据勾股定理即可求BD的值,根据面积法即可计算AE的长.
    【详解】
    矩形各内角为直角,∴△ABD为直角三角形
    在直角△ABD中,AB=6,AD=8
    则BD= =10,
    ∵△ABD的面积S=AB⋅AD=BD⋅AE,
    ∴AE= =4.8.
    故答案为4.8.
    此题考查矩形的性质,解题关键在于运用勾股定理进行计算
    三、解答题(本大题共5个小题,共48分)
    14、x1=2+,x2=2-
    【解析】
    试题分析:方程两边都加上一次项系数一半的平方,进行配方,两边直接开平方即可求得方程的解.
    试题解析:x2-4x=1
    x2-4x+4=1+4
    (x-2)2=5
    x-2=
    即:x1=2+,x2=2-
    考点:解一元二次方程---配方法.
    15、(1);(2)有四种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台;④A型设备1台,B型设备7台;(1)为了节约资金,应选购A型设备2台,B型设备8台.
    【解析】
    (1)购买A型的价格是a万元,购买B型的设备b万元,根据购买一台A型号设备比购买一台B型号设备多1万元,购买2台A型设备比购买1台B型号设备少1万元,可列方程组求解. (2)设购买A型号设备x台,则B型为(10-x)台,根据使治污公司购买污水处理设备的资金不超过100万元,进而得出不等式. (1)利用每月要求处理污水量不低于1880吨,可列不等式求解.
    【详解】
    解:(1)根据题意得:,
    解得:;
    (2)设购买污水处理设备A型设备x台,B型设备(10-x)台,根据题意得,
    12x+9(10-x)≤100,
    ∴x≤,
    ∵x取非负整数,
    ∴x=0,1,2,1
    ∴10-x=10,9,8,7
    ∴有四种购买方案:
    ①A型设备0台,B型设备10台;
    ②A型设备1台,B型设备9台;
    ③A型设备2台,B型设备8台.
    ④A型设备1台,B型设备7台;
    (1)由题意:220x+180(10-x)≥1880,
    ∴x≥2,
    又∵x≤,
    ∴x为2,1.
    当x=2时,购买资金为12×2+9×8=96(万元),
    当x=1时,购买资金为12×1+9×7=99(万元),
    ∴为了节约资金,应选购A型设备2台,B型设备8台.
    本题考查了一元一次不等式的应用,根据购买一台A型号设备比购买一台B型号设备多1万元,购买2台A型设备比购买1台B型号设备少1万元和根据使治污公司购买污水处理设备的资金不超过100万元,若每月要求处理洋澜湖的污水量不低于1880吨,等量关系和不等量关系分别列出方程组和不等式求解.
    16、(1)见解析;(2)B1(2,4)、B2(0,﹣1);(3)P1(b,﹣a),P2(b﹣2,﹣a﹣5).
    【解析】
    (1)根据△ABC绕原点顺时针旋转90°,得到△A1B1C1,△A1B1C1向左平移2个单位,再向下平移5个单位得到△A2B2C2.
    (2)根据图形得出对应点的坐标即可;
    (3)根据旋转和平移后的点P的位置,即可得出点P1、P2的坐标.
    【详解】
    解:(1)如图所示,△A1B1C1和△A2B2C2即为所求:
    (2)点B1坐标为(2,4)、B2坐标为(0,﹣1);
    (3)由题意知点P1坐标为(b,﹣a),点P2的坐标为(b﹣2,﹣a﹣5).
    考查了利用平移变换以及旋转变换进行作图,解题时注意:确定平移后图形的基本要素有两个:平移方向、平移距离.决定旋转后图形位置的因素为:旋转角度、旋转方向、旋转中心.
    17、(1)x>2或 x<-1;(2)-2<x<2.
    【解析】
    (1)根据例题可得:此题分两个不等式组和,分别解出两个不等式组即可;
    (2)根据两数相乘,异号得负可得此题也分两种情况和解出不等式组即可.
    【详解】
    解:(1)当x+1>1时,x-2>1,可以写成,
    解得:x>2;
    当x+1<1时,x-2<1,可以写成,
    解得:x<-1,
    综上:不等式解集:x>2或 x<-1;
    (2)当x+2>1时,x-2<1,可以写成,
    解得-2<x<2;
    当x+2<1时,x-2>1,可以写成,
    解得:无解,
    综上:不等式解集:-2<x<2.
    此题主要考查了不等式的解法,关键是正确理解例题的解题根据,然后再进行计算.
    18、(1)见解析,(2)表中组距是20次,组数是7组;(3)31人,50人;(4)26%
    【解析】
    (1)利用分布表和频数分布直方图可得到成绩在60≤x≤80的人数为2人,,成绩在160≤x≤180的人数为4人,然后补全补全频数分布表和频数分布直方图;
    (2)利用频数分布表和频数分布直方图求解;
    (3)把和的频数相加可得到跳绳次数在100≤x<140范围的学生数,把全部7组的频数相加可得到全班人数;
    (4)用后三组的频数和除以全班人数可得到全班同学跳绳的优秀率.
    【详解】
    解:(1)如图,成绩在的人数为2人,成绩在的人数为4人,
    (2)观察图表即可得:表中组距是20次,组数是7组;
    (3)∵的人数为18人,的人数为13人,
    ∴跳绳次数在范围的学生有18+13=31(人),
    全班人数为 (人)
    (4)跳绳次数不低于140次的人数为,
    所以全班同学跳绳的优秀率.
    本题考查了频(数)率分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2
    【解析】
    试题解析::如图,过A作AH⊥BC交CB的延长线于H,
    ∵AB=CB=4,S△ABC=4,
    ∴AH=2,
    ∴cs∠HAB=,
    ∴∠HAB=30°,
    ∴∠ABH=60°,
    ∴∠ABC=120°,
    ∵∠BAC=∠C=30°,
    作点P关于直线AC的对称点P′,
    过P′作P′Q⊥BC于Q交AC于K,
    则P′Q 的长度=PK+QK的最小值,
    ∴∠P′AK=∠BAC=30°,
    ∴∠HAP′=90°,
    ∴∠H=∠HAP′=∠P′QH=90°,
    ∴四边形AP′QH是矩形,
    ∴P′Q=AH=2,
    即PK+QK的最小值为2.
    本题考查了轴对称确定最短路线问题,矩形的性质,解直角三角形,熟记利用轴对称确定最短路线的方法是解题的关键.
    20、.
    【解析】
    解分式方程,得到解,并让解大于零,然后根据概率公式求解.
    【详解】
    解:解分式方程
    得:且x≠2
    令>0 且不等于2,则符合题意得卡片上的数字有:-2,0 ,4;
    ∴方程的解为正实数的概率为: ,故答案为.
    本题考查了概率公式和分式方程的求解,其关键是确定满足题意卡片上的数字..
    21、1.
    【解析】
    根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.
    【详解】
    解:∵MN是AB的垂直平分线,
    ∴AD=BD,
    ∴∠A=∠ABD,
    ∵∠DBC=15°,
    ∴∠ABC=∠A+15°,
    ∵AB=AC,
    ∴∠C=∠ABC=∠A+15°,
    ∴∠A+∠A+15°+∠A+15°=180°,
    解得∠A=1°.
    故答案为1°
    22、2
    【解析】
    分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.
    【详解】
    依题意得x2-x-2=1,解得x=2或-1,
    ∵x+1≠1,即x≠-1,
    ∴x=2.
    此题考查的是对分式的值为1的条件的理解和因式分解的方法的运用,该类型的题易忽略分母不为1这个条件.
    23、
    【解析】
    根据等边三角形的性质就可以得出△AEC≌△BDC,就可以得出AE=BD,∠E=∠BDC,由等腰直角三角形的性质就可以得出∠ADB=90°,由勾股定理就可以得出:,再设AE=k,则AD=3k,BD=k,求出BC=k,进而得到
    的值.
    【详解】
    ∵△ACB与△ECD都是等腰直角三角形,
    ∴∠ECD=∠ACB=90°,
    ∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,
    ∴,∠ECD−∠ACD=∠ACB−∠ACD,
    ∴∠ACE=∠BCD.
    在△AEC和△BDC中,

    ∴△AEC≌△BDC(SAS),
    ∴AE=BD,∠E=∠BDC,
    ∴∠BDC=45°,
    ∴∠BDC+∠ADC=90°,
    即∠ADB=90°.
    ∴.
    ∵,
    ∴可设AE=k,则AD=3k,BD=k,
    ∴,
    ∴BC=,
    ∴.
    故答案为:.
    此题考查勾股定理、等腰直角三角形、全等三角形的判定与性质,解题关键在于“设k法”列出比例式即可.
    二、解答题(本大题共3个小题,共30分)
    24、-1
    【解析】
    根据分式的加法和除法可以化简题目中的式子,然后从0,-1,-1中选一个使得原分式有意义的值代入即可解答本题
    【详解】
    解:

    =(x+1)+(x﹣1)
    =x+1+x﹣1
    =1x,
    当x=﹣1时,原式=1×(﹣1)=﹣1.
    此题考查分式的化简求值,掌握运算法则是解题关键
    25、 (1)证明见解析;(2)见解析.
    【解析】
    (1)根据“矩形的定义”证明结论;
    (2)连结AP.当AP⊥BC时AP最短,结合矩形的两对角线相等和面积法来求GH的值.
    【详解】
    (1)证明∵AC=9 AB=12 BC=15,
    ∴AC2=81,AB2=144,BC2=225,
    ∴AC2+AB2=BC2,
    ∴∠A=90°.
    ∵PG⊥AC,PH⊥AB,
    ∴∠AGP=∠AHP=90°,
    ∴四边形AGPH是矩形;
    (2)存在.理由如下:
    连结AP.
    ∵四边形AGPH是矩形,
    ∴GH=AP.
    ∵当AP⊥BC时AP最短.
    ∴9×12=15•AP.
    ∴AP=.
    本题考查了矩形的判定与性质.解答(2)题时,注意“矩形的对角线相等”和“面积法”的正确应用.
    26、(1);(2)D、E两点间的距离为或1.
    【解析】
    (1)如图,设等E的运动速度为xcm/s.由题意AD=4cm,AE=2x.分两种情形分别构建方程即可解决问题.
    (2)分两种情形利用相似三角形的性质解决问题即可.
    【详解】
    解:(1)如图,设等E的运动速度为xcm/s.由题意AD=4cm,AE=2x.

    ①当时,△ADE∽△ABC,
    ∴,
    解得x=,
    ∴点E的运动速度为cm/s.
    ②当,△ADE∽△ACB,
    ∴,
    ∴x=,
    ∴点E的是的为cm/s.
    (2)当△ADE∽△ABC时,,
    ∴,
    ∴DE=,
    当△ADE∽△ACB时,,
    ∴,
    ∴DE=1,
    综上所述,D、E两点间的距离为或1.
    本题考查相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
    题号





    总分
    得分

    A型
    B型
    价格(万元/台)
    a
    b
    处理污水量(吨/月)
    220
    180
    次数
    频数
    4
    18
    13
    8
    1
    相关试卷

    2024年重庆南开中学数学九上开学教学质量检测试题【含答案】: 这是一份2024年重庆南开中学数学九上开学教学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省南京十八中学数学九上开学教学质量检测试题【含答案】: 这是一份2024年江苏省南京十八中学数学九上开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,四象限;,解答题等内容,欢迎下载使用。

    2024年河北省石家庄市第九中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024年河北省石家庄市第九中学数学九上开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map